线程与全局解释器锁(GIL)
一、线程概论
1、何为线程
每个进程有一个地址空间,而且默认就有一个控制线程。如果把一个进程比喻为一个车间的工作过程那么线程就是车间里的一个一个流水线。
进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。
多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间(资源)
创建进程的开销要远大于线程开进程相当于建一个车间,而开线程相当于建一条流水线。
2、线程和进程的区别
1.Threads share the address space of the process that created it; processes have their own address space.
2.Threads have direct access to the data segment of its process; processes have their own copy of the data segment of the parent process.
3.Threads can directly communicate with other threads of its process; processes must use interprocess communication to communicate with sibling processes.
4.New threads are easily created; new processes require duplication of the parent process.
5.Threads can exercise considerable control over threads of the same process; processes can only exercise control over child processes.
6.Changes to the main thread (cancellation, priority change, etc.) may affect the behavior of the other threads of the process; changes to the parent process does not affect child processes.
中译:
1、线程共享创建它的进程的地址空间;进程有自己的地址空间。
2、线程可以直接访问其进程的数据段;进程有它们自己的父进程数据段的副本。
3、线程可以直接与进程的其他线程通信;进程必须使用进程间通信来与兄弟进程通信。
4、新线程很容易创建;新进程需要复制父进程。
5、线程可以对同一进程的线程进行相当大的控制;进程只能对子进程执行控制。
6、对主线程的更改(取消、优先级更改等)可能会影响该进程的其他线程的行为;对父进程的更改不会影响子进程。
3、多线程的优点
多线程和多进程相同指的是,在一个进程中开启多个线程
1)多线程共享一个进程的地址空间(资源)
2) 线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
3) 若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
4) 在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)
二、python的并发编程之多线程
1、threading模块介绍
multiprocessing模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍
对multiprocessing模块也不是很熟悉的朋友可以复习一下多线程时介绍的随笔:
30、进程的基础理论,并发(multiprocessing模块):http://www.cnblogs.com/liluning/p/7419677.html
官方文档:https://docs.python.org/3/library/threading.html?highlight=threading#(英语好的可以尝试挑战)
2、开启线程的两种方式(和进程一模一样)
两种方式里我们都有开启进程的方式可以简单复习回顾
1)方式一:
from threading import Thread
#from multiprocessing import Process
import os
def talk():
print('%s is running' %os.getpid()) if __name__ == '__main__':
t=Thread(target=talk)
# t=Process(target=talk)
t.start()
print('主',os.getpid())
2)方式二:
#开启线程
from threading import Thread
import os
class MyThread(Thread):
def __init__(self,name):
super().__init__()
self.name=name
def run(self):
print('pid:%s name:[%s]is running' %(os.getpid(),self.name)) if __name__ == '__main__':
t=MyThread('lln')
t.start()
print('主T',os.getpid()) #开启进程
from multiprocessing import Process
import os
class MyProcess(Process):
def __init__(self,name):
super().__init__()
self.name=name
def run(self):
print('pid:%s name:[%s]is running' % (os.getpid(), self.name))
if __name__ == '__main__':
t=MyProcess('lll')
t.start()
print('主P',os.getpid())
3、在一个进程下开启多个线程与在一个进程下开启多个子进程的区别
1)比较速度:(看看hello和主线程/主进程的打印速度)
from threading import Thread
from multiprocessing import Process
import os def work():
print('hello') if __name__ == '__main__':
#在主进程下开启线程
t=Thread(target=work)
t.start()
print('主线程/主进程') #在主进程下开启子进程
t=Process(target=work)
t.start()
print('主线程/主进程')
2)pid的区别:(线程和主进程相同,子进程和主进程不同)
from threading import Thread
from multiprocessing import Process
import os def work():
print('我的pid:',os.getpid()) if __name__ == '__main__':
#part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样
t1=Thread(target=work)
t2=Thread(target=work)
t1.start()
t2.start()
print('主线程/主进程pid:',os.getpid()) #part2:开多个进程,每个进程都有不同的pid
p1=Process(target=work)
p2=Process(target=work)
p1.start()
p2.start()
print('主线程/主进程pid:',os.getpid())
3)数据是否共享(线程与主进程共享数据,子进程只是将主进程拷贝过去操作的并非同一份数据)
from threading import Thread
from multiprocessing import Process
def work():
global n
n -= 1
n = 100 #主进程数据
if __name__ == '__main__':
# p=Process(target=work)
# p.start()
# p.join()
# print('主',n) #毫无疑问子进程p已经将自己的全局的n改成了99,但改的仅仅是它自己的,查看父进程的n仍然为100 t=Thread(target=work)
t.start()
t.join()
print('主',n) #查看结果为99,因为同一进程内的线程之间共享进程内的数据
4、练习
1)三个任务,一个接收用户输入,一个将用户输入的内容格式化成大写,一个将格式化后的结果存入文件
from threading import Thread
msg = []
msg_fort = []
def Inp():
while True :
msg_l = input('>>:')
if not msg_l : continue
msg.append(msg_l)
def Fort():
while True :
if msg :
res = msg.pop()
msg_fort.append(res.upper())
def Save():
with open('db.txt','a') as f :
while True :
if msg_fort :
f.write('%s\n' %msg_fort.pop())
f.flush() #强制将缓冲区中的数据发送出去,不必等到缓冲区满
if __name__ == '__main__':
p1 = Thread(target=Inp)
p2 = Thread(target=Fort)
p3 = Thread(target=Save)
p1.start()
p2.start()
p3.start()
2)将前面随笔中的服务端客户端例子用多线程实现(不了解的可以翻阅前几篇随笔)
5、threading模块其他方法
Thread实例对象的方法
# isAlive(): 返回线程是否活动的。
# getName(): 返回线程名。
# setName(): 设置线程名。 threading模块提供的一些方法:
# threading.currentThread(): 返回当前的线程变量。
# threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
# threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
主线程等其它线程
from threading import Thread,currentThread,activeCount
import os,time,threading
def talk():
time.sleep(2)
print('%s is running' %currentThread().getName()) if __name__ == '__main__':
t=Thread(target=talk)
t.start()
t.join()
print('主')
6、守护线程
1)守护线程和守护进程的区别
对主进程来说,运行完毕指的是主进程代码运行完毕
对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕
2)详细说明
主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束
主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。
三、Python GIL(Global Interpreter Lock)
1、定义:
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. 在CPython中,全局解释器锁是一个互斥锁,或GIL,它可以防止多个本地线程执行Python字节码。 This lock is necessary mainly because CPython’s memory management is not thread-safe. 这个锁是必需的,主要是因为CPython的内存管理不是线程安全的。 (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.) 然而,由于GIL存在,其他的特性已经发展到依赖于它的保证。
结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
注意:
首先需要明确的一点是GIL
并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL
归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL
对自己英语水平有信心的可以看一下:http://www.dabeaz.com/python/UnderstandingGIL.pdf(这篇文章透彻的剖析了GIL对python多线程的影响)
2、GIL介绍
GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。
可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。
要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程
'''
#验证python test.py只会产生一个进程
#test.py内容
import os,time
print(os.getpid())
time.sleep(1000)
'''
python3 test.py
#在windows下
tasklist |findstr python
#在linux下
ps aux |grep python 验证python test.py只会产生一个进程
在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问:
#1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
#2 所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。
综上:
如果多个线程的target=work,那么执行流程是多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行
GIL保护的是解释器级的数据,保护用户自己的数据则需要自己加锁处理
3、GIL与多线程
有了GIL的存在,同一时刻同一进程中只有一个线程被执行
听到这里,你是否会有疑问:进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势,也就是说python没用了
要解决这个问题,我们需要在几个点上达成一致:
#1. cpu到底是用来做计算的,还是用来做I/O的?
#2. 多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能
#3. 每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处
结论:
对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用
当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地
#分析:
我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
方案一:开启四个进程
方案二:一个进程下,开启四个线程
#单核情况下,分析结果:
如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜
如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜
#多核情况下,分析结果:
如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜
如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜
#结论:
现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。
4、性能测试
总结:
多线程用于IO密集型,如socket,爬虫,web
多进程用于计算密集型,如金融分析
线程与全局解释器锁(GIL)的更多相关文章
- python 线程队列、线程池、全局解释器锁GIL
一.线程队列 队列特性:取一个值少一个,只能取一次,没有值的时候会阻塞,队列满了,也会阻塞 queue队列 :使用import queue,用法与进程Queue一样 queue is especial ...
- 全局解释器锁GIL & 线程锁
1.GIL锁(Global Interpreter Lock) Python代码的执行由Python虚拟机(也叫解释器主循环)来控制.Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行 ...
- 21.线程,全局解释器锁(GIL)
import time from threading import Thread from multiprocessing import Process #计数的方式消耗系统资源 def two_hu ...
- 全局解释器锁GIL
我们使用高并发,一次是创建1万个线程去修改一个数并打印结果看现象: from threading import Thread import os def func(args): global n n ...
- python 什么是全局解释器锁GIL
什么是全局解释器锁GIL Python代码的执行由Python 虚拟机(也叫解释器主循环,CPython版本)来控制,Python 在设计之初就考虑到要在解释器的主循环中,同时只有一个线程在执行,即在 ...
- 并发编程——全局解释器锁GIL
1.全局解释器锁GIL GIL其实就是一把互斥锁(牺牲了效率但是保证了数据的安全). 线程是执行单位,但是不能直接运行,需要先拿到python解释器解释之后才能被cpu执行 同一时刻同一个进程内多个线 ...
- python 多线程编程之使用进程和全局解释器锁GIL
本文主要介绍如何在python中使用线程. 全局解释器锁: python代码的执行是由python虚拟机(又名解释器主循环)进行控制的.python中,主循环中同时只能有一个控制线程在执行,就像单核C ...
- 33、线程与全局解释器锁(GIL)
之前我们学了很多进程间的通信,多进程并发等等,今天我们来学习线程,线程和进程是什么关系,进程和线程有什么相同而又有什么不同今天就来揭晓这个答案. 一.线程概论 1.何为线程 每个进程有一个地址空间,而 ...
- Python全局解释器锁 -- GIL
首先强调背景: 1.GIL是什么?GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定. 2.每个CPU在同一时间只能 ...
随机推荐
- 简单列举几种常用 FTP
简单说下几种FTP FTP:文件传输协议(File Transfer Protocol,FTP) SFTP:OPENSSH 提供的隧道级文件传送(file transfer) FTPS:支持传输层安全 ...
- Oracle数据库PL/SQL那点事情---修改过电脑的用户名
在安装Oracle数据库的PL/SQL工具时候,电脑名称是重装系统后自动生成的用户名名称,作为程序员,有很强的强迫症,就想利用自己的英文名称作为自己电脑的名称,所以就修改了电脑的名称:结果PL/SQL ...
- oracle中表空间的相关操作
Oracle 创建表空间 注意点: 1.如果在PL/SQL 等工具里打开的话,直接修改下面的代码中[斜体加粗部分]执行 2.确保路径存在,比如[E:\app\Quentin\oradata\orcl] ...
- python中的字符串和编码
了解编码之前首先说下这几个词的概率: 位.字节.字符.字符串 1.位(bit)也称为比特 这个其实很简单,因为计算机都是二进制存储数据,也就是0和1,一个0或者1就表示一位.这是计算机存储的最小单位. ...
- Hibernate中连接数据库的配置
Hibernate连接数据库的配置 实体类的映射文件 <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mappin ...
- python要点记录
1.字典:当存储的key数目在几万到几十万之间效率最高.
- gradle第一篇:初入门
有的时候,感觉技术真是一年一个样,之前呢ant式微,被maven取代,而现在呢,maven慢慢式微,又渐渐要被gradle取代,不说多了我们现在就来讲一讲gradle吧. 第一步——安装: ①安装所需 ...
- 一些很好用但不常用的css属性总结 (持续中......)
在各种框架横行的9012,感觉我们学前端的都变得浮躁了很多,放一张最近流行的神图: 唉,扯远了, 还是整理我的东西吧,路漫漫其修远兮,吾将上下而求索! 1, position:sticky; 粘性定位 ...
- 关于MatlabGUI清除WorkSpace的用法
近日在调试Matlba GUI程序时,因为不想退出程序后手动Clear All来清理,又需要在过程中对WorkSpace进行清理,否则会引用之前的结果导致错误,找了很多资料,国内的论坛什么的都说用Cl ...
- 全网最详细的Git学习系列之介绍各个Git图形客户端(Windows、Linux、Mac系统皆适用ing)(图文详解)
不多说,直接上干货! 一.TortoiseGit - The coolest Interface to Git Version Control TortoiseGit 是 TortoiseSVN 的 ...