Portal --> bzoj3173

Solution

  感觉自己需要智力康复qwq

  首先题目给的这个序列肯定是一个\(1-n\)的排列,并且插入的顺序是从小到大

  仔细思考一下会发现如果知道了最终的序列,问题就比较好解决了,这里提供一种用线段树的做法:

  如果知道了最终的序列,记数字\(i\)在该序列中的位置为\(loc[i]\),那么我们按照\(i\)从小到大的顺序,查询结尾在\([1,loc[i])\)的这段位置中的最长上升子序列的最大值\(mx\),并将\(mx+1\)作为以\(loc[i]\)位置为结尾的答案,插入到线段树中\(loc[i]\)对应的节点里,复杂度是\(O(nlogn)\)

  然后现在的问题是怎么求最终的序列

  这个可以用平衡树来写,不过其实也可以用线段树来写

  考虑反过来确定每一个数在最终序列中的位置,因为是反过来考虑的,所以一开始的时候每一个位置都有一个数,然后我们根据读入的插入位置,按照\(n-1\)的顺序,找到当前这个数的位置,然后将它删掉(也就是对应的线段树节点的\(sum-1\))

​  具体一点就是比如当前考虑到第\(i\)个数,读入这个数应该要插入在\(a[i]\)的位置后面,也就是应该在当前这个序列的第\(a[i]+1\)个位置,那么找到这个位置,然后把这个位置删掉,这样就可以得到还没有插入这个数之前的序列的位置集合了,这部分的复杂度也是\(O(nlogn)\)的

​  然后就十分愉快地做完啦

  

  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=100010,SEG=MAXN*4;
namespace Seg{/*{{{*/
int ch[SEG][2],sum[SEG],mx[SEG];
int n,tot;
void pushup(int x){
sum[x]=sum[ch[x][0]]+sum[ch[x][1]];
mx[x]=max(mx[ch[x][0]],mx[ch[x][1]]);
}
void _build(int x,int l,int r){
sum[x]=0; mx[x]=0;
if (l==r){sum[x]=0; return;}
int mid=l+r>>1;
ch[x][0]=++tot; _build(ch[x][0],l,mid);
ch[x][1]=++tot; _build(ch[x][1],mid+1,r);
pushup(x);
}
void build(int _n){n=_n; tot=1; _build(1,1,n);}
void _update(int x,int d,int lx,int rx,int delta){
if (lx==rx) {sum[x]+=delta;mx[x]+=delta;return;}
int mid=lx+rx>>1;
if (d<=mid) _update(ch[x][0],d,lx,mid,delta);
else _update(ch[x][1],d,mid+1,rx,delta);
pushup(x);
}
void update(int d,int delta){_update(1,d,1,n,delta);}
int _query_mx(int x,int l,int r,int lx,int rx){
if (l<=lx&&rx<=r) return mx[x];
int mid=lx+rx>>1,ret=0;
if (l<=mid) ret=max(ret,_query_mx(ch[x][0],l,r,lx,mid));
if (r>mid) ret=max(ret,_query_mx(ch[x][1],l,r,mid+1,rx));
return ret;
}
int query(int l,int r){return _query_mx(1,l,r,1,n);}
int _get_loc(int x,int lx,int rx,int k){
if (lx==rx) return lx;
int mid=lx+rx>>1;
if (sum[ch[x][0]]>=k) return _get_loc(ch[x][0],lx,mid,k);
else return _get_loc(ch[x][1],mid+1,rx,k-sum[ch[x][0]]);
}
int get_loc(int k){return _get_loc(1,1,n,k);}
};/*}}}*/
int loc[MAXN],a[MAXN],b[MAXN];
int n,m,ans; int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&n);
for (int i=1;i<=n;++i) scanf("%d",b+i),++b[i];
Seg::build(n);
for (int i=1;i<=n;++i) Seg::update(i,1);
for (int i=n;i>=1;--i){
loc[i]=Seg::get_loc(b[i]);
Seg::update(loc[i],-1);
}
for (int i=1;i<=n;++i) a[loc[i]]=i; Seg::build(n);
ans=0;
int tmp;
for (int i=1;i<=n;++i){
if (loc[i]>1)
tmp=Seg::query(1,loc[i]-1);
else
tmp=0;
Seg::update(loc[i],tmp+1);
ans=max(ans,tmp+1);
printf("%d\n",ans);
}
}

【bzoj3173】最长上升子序列的更多相关文章

  1. [bzoj3173]最长上升子序列_非旋转Treap

    最长上升子序列 bzoj-3173 题目大意:有1-n,n个数,第i次操作是将i加入到原有序列中制定的位置,后查询当前序列中最长上升子序列长度. 注释:1<=n<=10,000,开始序列为 ...

  2. [BZOJ3173]最长上升子序列

    Problem 给你n个数A1~An,每次将i插入第Ai位后,最后输出每次插入后这个数列的最长上升子序列 Solution 这道题非常的妙.首先如果新加入的这个数构成了最长上升子序列,由于在它插入之前 ...

  3. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  4. 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列

    [LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...

  5. BZOJ3173 TJOI2013最长上升子序列(Treap+ZKW线段树)

    传送门 Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input ...

  6. bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2253  Solved: 1136[Submit][S ...

  7. bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...

  8. BZOJ3173:[TJOI2013]最长上升子序列(Splay)

    Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一 ...

  9. bzoj3173: [Tjoi2013]最长上升子序列(fhqtreap)

    这题用fhqtreap可以在线. fhqtreap上维护以i结尾的最长上升子序列,数字按从小到大加入, 因为前面的数与新加入的数无关, 后面的数比新加入的数小, 所以新加入的数对原序列其他数的值没有影 ...

随机推荐

  1. Selenium2+python自动化-xpath定位语法

    前言    在上一篇简单的介绍了用工具查看目标元素的xpath地址,工具查看比较死板,不够灵活,有时候直接复制粘贴会定位不到.这个时候就需要自己手动的去写xpath了,这一篇详细讲解xpath的一些语 ...

  2. Scrapy模拟登录GitHub

    d: 进入D盘 scrapy startproject GitHub 创建项目 scrapy genspider github github.com 创建爬虫 编辑github.py: # -*- c ...

  3. 跟浩哥学自动化测试Selenium -- Selenium简介 (1)

    Selenium 简介 Selenium 是一款开源的web自动化测试工具,用来模拟对浏览器的操作(主要是对页面元素的操作),简单来讲,其实就是一个jar包.Selenium早期的版本比如1.0市场占 ...

  4. Material Safety Data Sheet,MSDS - 化学品安全说明书

    化学品安全说明书(Material Safety Data Sheet)MSDS,国际上称作化学品安全信息卡,是化学品生产商和经销商按法律要求必须提供的化学品理化特性(如PH值,闪点,易燃度,反应活性 ...

  5. windows64系统下安装 redis服务 (详细)

    Linux下Redis安装链接 :     转到 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表) ...

  6. Fisherman`Team的任务看板

     

  7. 按Right-BICEP要求的测试用例

    测试方法:Right-BICEP 测试计划 1.Right-结果是否正确? 2.B-是否所有的边界条件都是正确的? 3.P-是否满足性能要求? 4.结果是否有符合要求的20道题目? 5.所得到的最大数 ...

  8. FPGA的软核与硬核

    硬核 zynq和pynq系列的fpga都是双ARM/Cortex-A9构成,这里的ARM处理器为硬核,Cortex-A9部分为FPGA部分.即整体分为两部分:PS/PL.PS部分为A9处理器部分,PL ...

  9. lintocde-247-线段树的查询 II

    247-线段树的查询 II 对于一个数组,我们可以对其建立一棵 线段树, 每个结点存储一个额外的值 count 来代表这个结点所指代的数组区间内的元素个数. (数组中并不一定每个位置上都有元素) 实现 ...

  10. Windows下IntelliJ IDEA中调试Spark Standalone

    参考:http://dataknocker.github.io/2014/11/12/idea%E4%B8%8Adebug-spark-standalone/ 转载请注明来自:http://www.c ...