这题原题。。。

这题题面七绕八绕,有点麻烦,反正最后转化就是一棵树,每个点有一个值,要把所有点选完,要求选择一个点必须是它的父亲和祖先已经全部被选了,贡献是这个点的权值乘上它被选择的排名

如果一个点是它的父亲的所有儿子中权值最小的点,那么只要它的父亲选了,那接下来就肯定是选它。所以在序列中这个点的父亲是和它相邻的,可以直接合并了

然后看两个序列合并是如何合并的

例如长 \(m_1\)​ 的序列 \(a\) 和长 \(m_2\) 的序列 \(b\),和并后会放在整个序列的第 \(i\) 位置之后

如果 \(a\) 在 \(b\) 前面,贡献为\(\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j+m_1)w_{b_j}\)

如果 \(a\) 在 \(b\) 后面,贡献为\(\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j+m_2)w_{a_j}\)

然后我们推一推

\(\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j+m_1)w_{b_j}=\sum_{j=1}^{m_1}(i+j)w_{a_j}+\sum_{j=1}^{m_2}(i+j)w_{b_j}+m_1perm_b\)

\(\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j+m_2)w_{a_j}=\sum_{j=1}^{m_2}(i+j)w_{b_j}+\sum_{j=1}^{m_1}(i+j)w_{a_j}+m_2perm_a\)

作差 \(perm_{ab}-perm_{ba}=m_1perm_b-m_2perm_a\)

假如\(m_1perm_b-m_2perm_a>0\) 即 \(\frac{perm_a}{m_1}\lt\frac{perm_b}{m_2}\) ,那么 \(ba\) 比 \(ab\) 更优秀

所以就可贪心,按平均值贪心就好了

上一波pbds,因为它可以把堆和并查集放在一起做

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/priority_queue.hpp>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
typedef std::pair<ld,int> pli;
const int MAXN=500000+10;
int n,e,beg[MAXN],to[MAXN<<1],nex[MAXN<<1],degree[MAXN],size[MAXN],treefa[MAXN],fa[MAXN],w[MAXN],s;
ll res,val[MAXN];
__gnu_pbds::priority_queue< pli,std::greater<pli> > q;
__gnu_pbds::priority_queue< pli,std::greater<pli> >::point_iterator it[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline bool nosolution()
{
for(register int i=1;i<=n;++i)
if(!degree[i])return false;
puts("-1");
return true;
}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline void dfs(int x,int f)
{
treefa[x]=f;
for(register int i=beg[x];i;i=nex[i])
if(to[i]!=f)dfs(to[i],x);
}
int main()
{
freopen("perm.in","r",stdin);
freopen("perm.out","w",stdout);
read(n);
s=n+1;
for(register int i=1,x;i<=n;++i)read(x),insert(x?(degree[i]++,x):s,i);
for(register int i=1;i<=n;++i)read(w[i]);
if(nosolution())return 0;
dfs(s,0);
fa[s]=s;val[s]=0;size[s]=1;
for(register int i=1;i<=n;++i)
{
fa[i]=i;val[i]=w[i];size[i]=1;
it[i]=q.push(std::make_pair((ld)val[i],i));
}
while(!q.empty())
{
int x=q.top().second,y=found(treefa[x]);
q.pop();
res+=1ll*val[x]*size[y];
fa[x]=y;size[y]+=size[x];val[y]+=val[x];
if(y==s)continue;
q.modify(it[y],std::make_pair((ld)val[y]/size[y],y));
}
write(res,'\n');
return 0;
}

【比赛】HNOI2018 排列的更多相关文章

  1. 【BZOJ5289】[HNOI2018]排列(贪心)

    [BZOJ5289][HNOI2018]排列(贪心) 题面 BZOJ 洛谷 题解 这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\( ...

  2. 5289: [Hnoi2018]排列

    5289: [Hnoi2018]排列 链接 分析: 首先将题意转化一下:每个点向a[i]连一条边,构成了一个以0为根节点的树,要求选一个拓扑序,点x是拓扑序中的第i个,那么价值是i*w[x].让价值最 ...

  3. bzoj 5289: [Hnoi2018]排列

    Description Solution 首先注意到实际上约束关系构成了一棵树 考虑这个排列 \(p\),编号为 \(a[i]\) 的出现了,\(i\) 才可以出现 那么如果连边 \((a[i],i) ...

  4. [HNOI2018]排列

    Description: 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le a_i \le n\),以及 \(n\) 个整数 \(w_1, w_2, \dots, ...

  5. [HNOI2018]排列[堆]

    题意 给定一棵树,每个点有点权,第 \(i\) 个点被删除的代价为 \(w_{p[i]}\times i\) ,问最小代价是多少. 分析 与国王游戏一题类似. 容易发现权值最小的点在其父亲选择后就会立 ...

  6. BZOJ5289: [Hnoi2018]排列

    传送门 第一步转化,令 \(q[p[i]]=i\),那么题目变成: 有一些 \(q[a[i]]<q[i]\) 的限制,\(q\) 必须为排列,求 \(max(\sum_{i=1}^{n}w[i] ...

  7. loj2509 hnoi2018排列

    题意:对于a数组,求它的一个合法排列的最大权值.合法排列:对于任意j,k,如果a[p[j]]=p[k],那么k<j. 权值:sigma(a[p[i]]*i).n<=50W. 标程: #in ...

  8. BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)

    BZOJ LOJ 洛谷 \(Kelin\)写的挺清楚的... 要求如果\(a_{p_j}=p_k\),\(k\lt j\),可以理解为\(k\)要在\(j\)之前选. 那么对于给定的\(a_j=k\) ...

  9. [BZOJ5289][HNOI2018]排列(拓扑排序+pb_ds)

    首先确定将所有a[i]向i连边之后会形成一张图,图上每条有向边i->j表示i要在j之前选. 图上的每个拓扑序都对应一种方案(如果有环显然无解),经过一系列推导可以发现贪心策略与合并的块的大小和w ...

随机推荐

  1. 每周开源项目分享-年轻人的第一个OAuth2.0 Server:hydra

    年轻人的第一个OAuth2.0 Server:hydra hydra 是什么呢? OpenID Connect certified OAuth2 Server - cloud native, secu ...

  2. 创龙6748开发板加载.out出现a data verification error occurred, file load failed

    1. 需要提前添加GEL文件 2. 找到GEL文件路径 3. 然后再加载.out文件

  3. ubuntu的学习教程(常用操作)

    摘要 最近在学习linux,把自己学习过程中遇到的常用操作以及一些有助于理解的内容记录下来.我主要用的是ubuntu系统 命令提示符 '~' 这个是指用户的家目录,用户分为root用户和普通用户,ro ...

  4. jenkens其实是代码上传工具

    Jenkins 持续集成使用教程 用 jenkins 有什么好处 通过规范化来完成,简单,繁琐,浪费时间的重复工作 规范化工作,以免出现低级错误 实现随时随地任何人一键构建 ...... 安装 jen ...

  5. 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据

    人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...

  6. 爬虫:Scrapy12 - Stats Collection

    Scrapy 提供了方便的收集数据的机制.数据以 key/value 方式存储,值大多是计数值.该机制叫做数据收集器(Stats Collector),可以通过 Crawler API 的属性 sta ...

  7. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  8. 软件工程第七周psp

    1.PSP表格 类别 任务 开始时间 结束时间 中断时间 delta时间 立会 汇报昨天的成绩,分配任务,部署计划 10月27日18:00 10月27日18:36 0 36分钟 准备工作 查阅有关资料 ...

  9. 02慕课网《进击Node.js基础(一)》——CommonJs标准

    是一套规范管理模块 每个js 为一个模块,多个模块作为一个包 node.js和Couchdb是对其的实现: 不同于jQuery 模块:定义.标识.引用(地址/模块名称) 模块类型: 核心模块http ...

  10. c# apache服务器请求得到数据(初级)

    1.代码: string data = new WebClient().DownloadString("http://localhost:81/123.txt");