【[国家集训队]Crash的数字表格 / JZPTAB】
这道题我们要求的是
\]
总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\times lcm(i,j)=i\times j\)
所以很容易的可以转化成这个柿子
\]
现在开始套路了
先设两个函数
\]
\]
\]
显然则有
\]
反演得
\]
于是答案就是
\]
\]
后面的一大坨东西真是太烦人了,搞到前面来
\]
于是我们可以用\(\Theta(n \ln n)\)来求出\(\sum_{i|d}\frac{\mu(\frac{d}{i})\times d^2}{i}\)之后前缀和
于是有了一个\(70\)分的代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 10000005
#define LL long long
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
const LL mod=20101009;
int n,m;
int f[maxn],p[maxn>>2];
LL pre[maxn];
int main()
{
scanf("%d%d",&n,&m);
if(n>m) std::swap(n,m);
f[1]=pre[1]=1;
for(re int i=2;i<=n;i++)
{
if(!f[i]) p[++p[0]]=i,pre[i]=(1-i+mod);
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0)
{
pre[i*p[j]]=pre[i];
break;
}
pre[p[j]*i]=pre[p[j]]*pre[i]%mod;
}
}
for(re int i=1;i<=n;i++) pre[i]=(i*pre[i]%mod+pre[i-1])%mod;
LL ans=0;
for(re LL l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
LL N=n/l,M=m/l;
ans=(ans+((N+1)*N/2%mod)*((M+1)*M/2%mod)%mod*(pre[r]-pre[l-1]+mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
显然不行
我们设\(T=\frac{d}{i}\)
那么
\]
定义\(h(x)=\sum_{T|x}\mu(T)\times T\)
会发现\(h\)是一个积性函数,可以考虑如何线筛
首先\(x\)是质数\(h(x)=1-x\)
互质的话可以直接乘起来
如果不互质的话需要好好考虑一下了
仔细思考一下这个\(h\)的含义,会发现有一些约数\(T\)是没有用的,就是那些\(\mu(T)=0\)的约数
而线筛的时候一旦\(i\%p[j]==0\),说明\(p[j]\)在\(i\)中出现过,于是\(p[j]\)并不能组成一些新的有用约数,函数值和\(h(i)\)相比其实没有什么变化,所以就有
\]
于是现在的答案变成了
\]
于是直接求\(d\times h(d)\)的前缀和就好了
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 10000005
#define LL long long
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
const LL mod=20101009;
int n,m;
int f[maxn],p[maxn>>2];
LL pre[maxn];
int main()
{
scanf("%d%d",&n,&m);
if(n>m) std::swap(n,m);
f[1]=pre[1]=1;
for(re int i=2;i<=n;i++)
{
if(!f[i]) p[++p[0]]=i,pre[i]=(1-i+mod);
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0)
{
pre[i*p[j]]=pre[i];
break;
}
pre[p[j]*i]=pre[p[j]]*pre[i];
}
}
for(re int i=1;i<=n;i++) pre[i]=(i*pre[i]%mod+pre[i-1])%mod;
LL ans=0;
for(re LL l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
LL N=n/l,M=m/l;
ans=(ans+((N+1)*N/2%mod)*((M+1)*M/2%mod)%mod*(pre[r]-pre[l-1]+mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
【[国家集训队]Crash的数字表格 / JZPTAB】的更多相关文章
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
- [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 【题解】[国家集训队]Crash的数字表格 / JZPTAB
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
随机推荐
- Hadoop学习笔记(10) ——搭建源码学习环境
Hadoop学习笔记(10) ——搭建源码学习环境 上一章中,我们对整个hadoop的目录及源码目录有了一个初步的了解,接下来计划深入学习一下这头神象作品了.但是看代码用什么,难不成gedit?,单步 ...
- 图解源码之java锁的获取和释放(AQS)篇
以独占式不公平锁为例,通过5个线程争夺ReentrantLock的过程,图解ReentrantLock源码实现,了解显示锁的工作流程. 任何时刻拿到锁的只有一个线程,未拿到锁的线程会打包成节点(nod ...
- CodeForces 606A(水)
这道题之前没注意到at least,审题不仔细啊,两个问题解法还是有些许区别的 有at least的 #include <iostream> #include <string> ...
- Node.js IO处理输入和回显,以及当今web应用程序的发展史
1.关于Node.js IO处理输入和回显 在Windows终端或者CD中输入 echo 'I must learn about Node.js' 结果将刚刚输入的 echo 'I mus ...
- CF961F k-substrings
题意 给定一个字符串 \(S\) 求所有的 \(S[i,n-i+1]\) 的 \(border\) 长度(最长的前缀等于后缀),要求长度是奇数 \(n\le 10^6\) Sol 首先发现每次求的串都 ...
- css常见的快捷开发代码汇总(长期更新)
http://caibaojian.com/popular-css-snippets.html
- Drupal7配置简洁URL(Clear URL)
参考:Apache Rewrite url重定向功能的简单配置 这两天折腾死了 首先说一下我的环境: Aache2.4.25-x64-vc14-r1;php-7.0.19-Win32-VC14-x64 ...
- 跨域方法:JSONP、iframe
同源策略:浏览器出于安全考虑,会限制文档或脚本中发起的跨域请求(但src请求不受此限)资源的加载.实际上通过抓包软件可以发现请求和响应都会成功,但是响应数据并不会被浏览器加载.不同源的客户端脚本(ja ...
- 一行代码解决各种IE的兼容问题
一行代码解决各种IE的兼容问题 在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 < ...
- CAS服务器集群和客户端集群环境下的单点登录和单点注销解决方案
CAS的集群环境,包括CAS的客户应用是集群环境,以及CAS服务本身是集群环境这两种情况.在集群环境下使用CAS,要解决两个问题,一是单点退出(注销)时,CAS如何将退出请求正确转发到用户sessio ...