转--NLTK的内置函数
NLTK的内置函数
1. 词语索引
(1) concordance函数 给出一个指定单词每一次出现,连同上下文一起显示。
>>>text1.concordance('monstrous')
(2) similar函数 查找文中上下文结构相似的词,如the___pictures 和 the___size 等。
>>> text1.similar("monstrous")
(3) common_contexts 函数 检测、查找两个或两个以上的词共同的上下文。
>>> text2.common_contexts(["monstrous", "very"])
be_glad am_glad a_pretty is_pretty a_lucky
>>>
2. 词语离散图
判断词在文本中的位置:从文本开头算起在它前面有多少词。这个位置信息可以用离散图表示。
>>> text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"])
>>>
3. 词语计数
>>>len(text3)
44764
4. 文本-->词表 并排序
sorted(set(text3))
5. 词汇丰富度
>>> from __future__ import division
>>> len(text3) / len(set(text3))
16.050197203298673
>>>
6. 词在文本中出现的次数和百分比
>>> text3.count("smote")
5
>>> 100 * text4.count('a') / len(text4)
1.4643016433938312
>>>
7. 索引列表
(1) 表示元素位置的数字叫做元素的索引。
>>> text1[50]
'grammars'
>>>
(2) 找出一个词第一次出现的索引。
>>> text1.index('grammars')
50
>>>
8. 切片 可以获取到文本中的词汇(文本片段)。
>>>text1[100:120]['and', 'to', 'teach', 'them', 'by', 'what', 'name', 'a', 'whale', '-', 'fish', 'is', 'to', 'be', 'called', 'in', 'our', 'tongue', 'leaving', 'out']
>>>
9. NLTK 频率分布类中定义的函数
例子 描述
fdist = FreqDist(samples) 创建包含给定样本的频率分布
fdist.inc(sample) 增加样本
fdist['monstrous'] 计数给定样本出现的次数
fdist.freq('monstrous') 给定样本的频率
fdist.N() 样本总数
fdist.keys() 以频率递减顺序排序的样本链表
for sample in fdist: 以频率递减的顺序遍历样本
fdist.max() 数值最大的样本
fdist.tabulate() 绘制频率分布表
fdist.plot() 绘制频率分布图
fdist.plot(cumulative=True) 绘制累积频率分布图
fdist1 < fdist2 测试样本在fdist1 中出现的频率是否小于fdist2
text1.concordance("monstrous") # 搜索单词,并显示上下文
text1.similar("monstrous") # 搜索具有相似上下文的单词
text2.common_context(["monstrous", "very"]) #两个或两个以上的词的共同的上下文
text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"]) # 将语料按时间顺序拼接,此命令即可画出这些单词在语料中的位置,可以用来研究随时间推移语言使用上的变化
text3.generate() # 根据语料3的词序列统计信息生成随机文本【计算机写SCI论文的原理?】
len(text3) / len(set(text3)) # 计算平均词频 或者叫 词汇丰富度
100* text3.count("smote") / len(text3) # 计算特定词在文本中的百分比
标识符: All words
类型:Unique words
FreqDist(text1).keys()[:50] # 查看text1中频率最高的前50个词,FreeDist([])用来计算列表中元素的频率
FreqDist(text1).hapaxes() # 查看频率为1的词
bigrams(['more', 'is', 'said', 'than', 'done']) # 构造双连词,即[('more', 'is'), ('is', 'said'), ('said', 'than'), ('than', 'done')]
text4.collocations() # 返回文本中的双连词
fdist = FreqDist(samples) 创建包含给定样本的频率分布
fdist.inc(sample) 增加样本
fdist['monstrous'] 计数给定样本出现的次数
fdist.freq('monstrous') 给定样本的频率
fdist.N() 样本总数
fdist.keys() 以频率递减顺序排序的样本链表
for sample in fdist: 以频率递减的顺序遍历样本
fdist.max() 数值最大的样本
fdist.tabulate() 绘制频率分布表
fdist.plot() 绘制频率分布图
fdist.plot(cumulative=True) 绘制累积频率分布图
fdist1 < fdist2 测试样本在 fdist1 中出现的频率是否小于 fdist2
gutenberg.raw(fileid) # 给出原始文本内容
gutenberg.words(fileid) # 词数
gutenberg.sents(fileid) # 句数
wordlists = PlaintextCorpusReader(corpus_root, '.*') # 读入自己的语料库
cfdist= ConditionalFreqDist(pairs) 从配对链表中创建条件频率分布
cfdist.conditions() 将条件按字母排序
cfdist[condition] 此条件下的频率分布
cfdist[condition][sample] 此条件下给定样本的频率
cfdist.tabulate() 为条件频率分布制表
cfdist.tabulate(samples, conditions) 指定样本和条件限制下制表
cfdist.plot() 为条件频率分布绘图
cfdist.plot(samples, conditions) 指定样本和条件限制下绘图
cfdist1 < cfdist2 测试样本在 cfdist1 中出现次数是否小于在 cfdist2 中出现次数
条件概率的应用:
# -*- encoding: utf-8 -*-
import nltk
def generate_model(cfdist, word, num=15):
for i in range(num):
print word
word = cfdist[word].max()
text = nltk.corpus.genesis.words('english-kjv.txt')
bigrams = nltk.bigrams(text)
cfd = nltk.ConditionalFreqDist(bigrams)
print cfd['living']
generate_model(cfd, 'living')
nltk.corpus.stopwords.words('english') # stop words, 停用词
nltk.corpus.names # 姓名
wordnet.synsets('car') # 同义词集
wordnet.lemmas('car') # 获取所有包含词car的词条
from urllib import urlopen
url = "http://www.gutenberg.org/files/2554/2554.txt"
raw = urlopen(url).read()
url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
html = urlopen(url).read()
raw = nltk.clean_html(html) # 清除html标记,但导航等内容还是无法清除
import feedparser
blog = feedparser.parse("http://languagelog.ldc.upenn.edu/nll/?feed=atom")
blog['feed']['title']
post = blog.entries[2]
tokens = nltk.word_tokenize(raw) # 分词
text = nltk.Text(tokens) # 下一步才能使用text.collocations()等函数
# 解码
import codecs
f = codecs.open(path, encoding='latin2')
# 正则
re.findall(r'^.*(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing') ==> ['ing']
re.findall(r'^.*(?:ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing') ==> ['processing']
re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes') ==> [('processe', 's')]
re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes') ==> [('processe', 'es')]
re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$', 'language') ==> [('processe', '')]
# 查找上、下位词
hobbies_learned = nltk.Text(brown.words(categories=['hobbies', 'learned']))
hobbies_learned.findall(r"<\w*> <and> <other> <\w*s>")
将得到:
speed and other activities; water and other liquids; tomb and other
landmarks; Statues and other monuments; pearls and other jewels;
charts and other items; roads and other features; figures and other
objects; military and other areas; demands and other factors;
# 词干提取
tokens = nltk.word_tokenize(raw)
porter = nltk.PorterStemmer()
lancaster = nltk.LancasterStemmer()
[porter.stem(t) for t in tokens]
# 词形归并
wnl = nltk.WordNetLemmatizer()
[wnl.lemmatize(t) for t in tokens]
# 分词
nltk.regexp_tokenize()
# 找到文本中最长的词
maxlen = max(len(word) for word in text)
[word for word in text if len(word) == maxlen] # 熟悉并经常使用
lengths = map(len, nltk.corpus.brown.sents(categories="news"))
avg = sum(lengths) / len(lengths)
set() # 后台已经做了索引,集合成员地查找尽可能使用set
matplotlib # 绘图工具
NetworkX # 网络可视化
转--NLTK的内置函数的更多相关文章
- Entity Framework 6 Recipes 2nd Edition(11-12)译 -> 定义内置函数
11-12. 定义内置函数 问题 想要定义一个在eSQL 和LINQ 查询里使用的内置函数. 解决方案 我们要在数据库中使用IsNull 函数,但是EF没有为eSQL 或LINQ发布这个函数. 假设我 ...
- Oracle内置函数:时间函数,转换函数,字符串函数,数值函数,替换函数
dual单行单列的隐藏表,看不见 但是可以用,经常用来调内置函数.不用新建表 时间函数 sysdate 系统当前时间 add_months 作用:对日期的月份进行加减 写法:add_months(日期 ...
- python内置函数
python内置函数 官方文档:点击 在这里我只列举一些常见的内置函数用法 1.abs()[求数字的绝对值] >>> abs(-13) 13 2.all() 判断所有集合元素都为真的 ...
- DAY5 python内置函数+验证码实例
内置函数 用验证码作为实例 字符串和字节的转换 字符串到字节 字节到字符串
- python之常用内置函数
python内置函数,可以通过python的帮助文档 Build-in Functions,在终端交互下可以通过命令查看 >>> dir("__builtins__&quo ...
- freemarker内置函数和用法
原文链接:http://www.iteye.com/topic/908500 在我们应用Freemarker 过程中,经常会操作例如字符串,数字,集合等,却不清楚Freemrker 有没有类似于Jav ...
- set、def、lambda、内置函数、文件操作
set : 无序,不重复,可以嵌套 .add (添加元素) .update(接收可迭代对象)---等于批量 添加 .diffrents()两个集合不同差 .sysmmetric difference( ...
- SQL Server 内置函数、临时对象、流程控制
SQL Server 内置函数 日期时间函数 --返回当前系统日期时间 select getdate() as [datetime],sysdatetime() as [datetime2] getd ...
- Python-Day3知识点——深浅拷贝、函数基本定义、内置函数
一.深浅拷贝 import copy #浅拷贝 n1={'k1':'wu','k2':123,'k3':['carl',852]} n2=n1 n3=copy.copy(n1) print(id(n1 ...
随机推荐
- 使用 log4js UDP 发送数据到 logstash
本文地址 http://www.cnblogs.com/jasonxuli/p/6532723.html 因为 nodejs 一般会部署在多台机器,并且每台机器会起多个进程,因此查看日志时往往要人工区 ...
- 20135320赵瀚青LINUX第四章读书笔记
概述 什么是进程调度 进程调度:在可运行态进程之间分配有限处理器时间资源的内核子系统. 一.调度策略 4.1进程类型 I/O消耗型进程:大部分时间用来提交I/O请求或是等待I/O请求,经常处于可运行状 ...
- FastCGI介绍及Nginx fastcgi配置优化
FastCGI介绍 FastCGI是从CGI发展改进而来的.传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务 ...
- asp.net和.net的区别
http://zhidao.baidu.com/link?url=BEIkzsJqo-tnOmWKwzsiuXeohqVJzb_iRCZ5gWCozAGVdw2FSnWW95r3vaUAecUnKsW ...
- Python学习札记(二十八) 模块1
参考:模块 NOTE 1.模块:一个.py文件称为一个模块. 2.代码模块化的意义:a.提升程序的可维护性 b.不用重复造轮子 3.避免模块冲突,解决方法:引入了按目录来组织模块的方法,称为包(Pac ...
- display:box,按比列划分,水平均分,及垂直等高
一.按比例划分 <div class="test"> <p id="p1">Hello</p> <p id=" ...
- 快递100API接口开发
api.kuaidi100.com 获得物流单号的跟踪信息(免费) 1.应用场景 2.是否需要授权 3.请求地址 4.输入参数 5.返回结果 6.返回示例 7.API工具 8.FAQ 通过向指定的地址 ...
- C# 字符串与字节数组相互转换
https://www.cnblogs.com/xiaoqingshe/p/5882601.html
- UVALive-3415 Guardian of Decency (最大独立集)
题目大意:一个老师要带一些学生去春游,但是要带的学生中任意两个人都满足下面四个条件中的至少一个:1.性别相同:2.身高差大与40公分:3.最喜欢的音乐类型不同:4.最喜欢的体育运动相同.问老师最多能带 ...
- jquery属性值选择器
$("[attribute|='value']") 选择指定属性值等于给定字符串或改字符串为前缀(该字符串后跟一个连字符“-”)的元素. attribute: 一个属性名 valu ...