题目链接

题意分析

一句话题意就是 : 让你选出\((k+1)\)条不相交的链 使得这些链的边权总和最大 (这些链可以是点)

我们考虑使用树形\(DP\)

\(dp[i][j][0/1/2]\)表示以\(i\)为根的子树选出\(j\)条链 并且\(j\)的度数是\(0/1/2\)的最大总和

那么我们使用树上背包进行转移

\[dp[u][j][0]=dp[u][j-p][0]+dp[v][p][0]
\]

\[dp[u][j][1]=max(dp[u][j-p][1]+dp[v][p][0],dp[u][j-p][0]+dp[v][p][1]+w[now])
\]

\[dp[u][j][2]=max(dp[u][j-p][2]+dp[v][p][0],dp[u][j-p][1]+dp[v][p-1][1]+w[i])
\]

但是这是妥妥的\(O(nk^2)\)

所以考虑优化 我们发现最终答案是\(dp[1][k][0]\)

也不知道为什么发现这是一个上凸函数

也就是\(f''(x)<0\)

所以我们考虑二分\(k\)所在点的斜率

那么该斜率的直线同该函数的且切点就是\((x,f(x))\)

怎么求? ? ?

\[y=mx+b
\]

\[f(x)=mx+b
\]

\[b=mx
\]

\[max(b)=max(f(x)-mx)
\]

我们二分出这个位置就可以了

CODE:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<string>
#include<queue>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<deque>
#include<vector>
#include<ctime>
#define ll long long
#define inf 0x7fffffff
#define N 6000008
#define IL inline
#define M 1008611
#define D double
#define maxn 110
#define R register
using namespace std;
template<typename T>IL void read(T &_)
{
T __=0,___=1;char ____=getchar();
while(!isdigit(____)) {if(____=='-') ___=0;____=getchar();}
while(isdigit(____)) {__=(__<<1)+(__<<3)+____-'0';____=getchar();}
_=___ ? __:-__;
}
/*-------------OI使我快乐-------------*/
ll n,k,tot;
ll le,ri,ans;
ll to[N],nex[N],head[N],w[N];
struct Node{
ll cnt;ll val;
friend Node operator +(const Node &A,const Node &B)
{return (Node){A.cnt+B.cnt,A.val+B.val};}
friend bool operator <(const Node &A,const Node &B)
{return A.val==B.val ? A.cnt<B.cnt:A.val<B.val;}
}dp[N][3];
IL void add(ll x,ll y,ll z)
{to[++tot]=y;nex[tot]=head[x];head[x]=tot;w[tot]=z;}
IL void dfs(ll now,ll fat,ll mid)
{
dp[now][0]=dp[now][1]=(Node){0,0};dp[now][2]=(Node){1,-mid};
//这里一个点看做一条链
for(R ll i=head[now];i;i=nex[i])
{
ll v=to[i];
if(v==fat) continue;
dfs(v,now,mid);
dp[now][2]=max(dp[now][2]+dp[v][0],dp[now][1]+dp[v][1]+(Node){1,w[i]-mid});
dp[now][1]=max(dp[now][1]+dp[v][0],dp[now][0]+dp[v][1]+(Node){0,w[i]});
dp[now][0]=dp[now][0]+dp[v][0];
}
dp[now][0]=max(dp[now][0],max(dp[now][1]+(Node){1,-mid},dp[now][2]));
}
IL bool check(ll mid)
{
dfs(1,0,mid);
return dp[1][0].cnt>=k;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);read(k);++k;
for(R ll i=1,x,y,z;i<n;++i)
{
read(x);read(y);read(z);
add(x,y,z);add(y,x,z);
}
le=-1e13;ri=1e13;
while(le<=ri)
{
ll mid=(le+ri)>>1;
if(check(mid)) le=mid+1,ans=mid;
else ri=mid-1;
}
check(ans);
printf("%lld\n",dp[1][0].val+ans*k);
// fclose(stdin);
// fclose(stdout);
return 0;
}

HEOI 2019 RP++

P4383 [八省联考2018]林克卡特树lct的更多相关文章

  1. 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)

    题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...

  2. P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分

    $ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...

  3. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

  4. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  5. P4383 [八省联考2018]林克卡特树 树形dp Wqs二分

    LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...

  6. 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分

    题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...

  7. [八省联考2018]林克卡特树lct

    题解: zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分.. 不过得分开来写..因为两个数组不能同时满足 背包的话就是 $f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上 ...

  8. 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)

    题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...

  9. [BZOJ5252][八省联考2018]林克卡特树lct

    bzoj(上面可以下数据) luogu description 在树上选出\(k\)条点不相交的链,求最大权值. 一个点也算是一条退化的链,其权值为\(0\). sol 别问我为什么现在才写这题 首先 ...

随机推荐

  1. Rotate image and fit show use canvas

    Description In the field of image processing, We always to show image after modified the image raw d ...

  2. Java 设计模式系列(十一)享元模式

    Java 设计模式系列(十一)享元模式 Flyweight 享元模式是对象的结构模式.享元模式以共享的方式高效地支持大量的细粒度对象. 一.享元模式的结构 享元模式采用一个共享来避免大量拥有相同内容对 ...

  3. Linux下javaweb环境搭建

    步骤: 1.使用远程工具连接上服务器,例如xsheel(ssh).filezilla(ftp) 2.JDK安装及相关配置 3.Mysql安装及相关配置 4.Tomcat安装及相关配置 5.项目部署及启 ...

  4. Android工具类整合

    Android-JSONUtil工具类 常用的Json工具类,包含Json转换成实体.实体转json字符串.list集合转换成json.数组转换成json public class JSONUtil ...

  5. postgresql 修改配置生效方法

    对于配置服务器,,太多时候我们在Linux中做的操作是,配置*.conf文件,然后重启服务.而很多服务都具有reload功能,而但是具体到某个配置,有时候直接说出需不需要重启服务而使得配置生效,这并不 ...

  6. 使用Python登录腾讯MTA数据分析平台,然后获取相关数据

    思路: 第一步:使用pypeteer.launcher打开浏览器, 第二步:找到mta的登录页面,默认是使用QQ登录的,需要再触发一下切换使用帐号密码登录的按钮(通过使用iframe嵌入的腾讯单点登录 ...

  7. kv数据库对比总结

    集群型: hbase Cassandra scylladb redis类: redis + twemproxy codis 持久型: pika ssdb

  8. JS控制输入框,输入正确的价格

    在HTML中,验证输入内容的正确性是提高用户体验的一方面,同时也是初步保证了数据的来源的正确性. 下面是一个常用的控制输入正确的价格的JS代码 function clearNoNum(obj) { o ...

  9. [C#学习笔记]Func委托与Action委托

    学习一项新知识的时候,最好的方法就是去实践它. 前言 <CLR via C#>这本神书真的是太有意思了!好的我的前言就是这个. Fun 如果要用有输入参数,有返回值的委托,那么Func委托 ...

  10. iOS 界面布局

    1. auto layout http://www.devtalking.com/articles/adaptive-layout-for-iphone6-1/ http://blog.sina.co ...