【bzoj4709】[Jsoi2011]柠檬 斜率优化
题目描述
给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值。求最大总价值。
$n\le 10^5$ 。
输入
输出
样例输入
5
2
2
5
2
3
样例输出
21
题解
斜率优化
设 $f[i]$ 表示前 $i$ 个数分成若干段的最大总价值。
显然对于分成的每一段,左端点的数、右端点的数、选择的数一定是相同的。因为如果不相同则可以从这个段里删去这个数,答案会更优。
于是就有转移:$f_i=f_{j-1}+a·(c_i-c_j+1)^2\ ,\ j\le i\ ,\ a_j=a_i$ ,其中 $a$ 表示原序列,$c$ 表示这个位置时这个数第几次出现(即出现次数的前缀和)。
显然这个式子可以斜率优化,整理得:$f_{j-1}+a·(c_j-1)^2=ac_i·2(c_j-1)+f_i-ac_i^2$ ,其中 $y$ 是 $f_{j-1}+a·(c_j-1)^2$ ,$k$ 是 $ac_i$ ,$x$ 是 $2(c_j-1)$ ,$b$ 是 $f_i-ac_i^2$ 。
这里 $k$ 单调递增,$x$ 单调递增,然而要求的是 $b$ 的最大值,因此只能使用单调栈维护上凸壳。对每种数开一个vector即可。询问时在vector上二分。
时间复杂度 $O(n\log n)$
#include <cstdio>
#include <vector>
#define N 100010
#define y(i) (f[i - 1] + a[i] * squ(c[i] - 1))
#define x(i) 2 * (c[i] - 1)
using namespace std;
typedef long long ll;
vector<int> v[10010];
ll cnt[10010] , c[N] , f[N];
int a[N];
inline ll squ(ll x)
{
return x * x;
}
int main()
{
int n , i , l , r , mid , ret , t;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &a[i]) , c[i] = ++cnt[a[i]];
while((t = v[a[i]].size() - 1) > 0 && (x(i) - x(v[a[i]][t])) * (y(v[a[i]][t - 1]) - y(v[a[i]][t])) - (y(i) - y(v[a[i]][t])) * (x(v[a[i]][t - 1]) - x(v[a[i]][t])) > 0) v[a[i]].pop_back();
v[a[i]].push_back(i);
l = 1 , r = v[a[i]].size() - 1 , ret = 0;
while(l <= r)
{
mid = (l + r) >> 1;
if(f[v[a[i]][mid] - 1] + a[i] * squ(c[i] - c[v[a[i]][mid]] + 1) > f[v[a[i]][mid - 1] - 1] + a[i] * squ(c[i] - c[v[a[i]][mid - 1]] + 1)) ret = mid , l = mid + 1;
else r = mid - 1;
}
f[i] = f[v[a[i]][ret] - 1] + a[i] * squ(c[i] - c[v[a[i]][ret]] + 1);
}
printf("%lld\n" , f[n]);
return 0;
}
【bzoj4709】[Jsoi2011]柠檬 斜率优化的更多相关文章
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- [BZOJ4709][JSOI2011]柠檬(斜率优化DP)
显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...
- 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
[BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...
- bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...
- [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp
题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
- BZOJ4709 JSOI2011柠檬(动态规划)
首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...
- BZOJ4709: [Jsoi2011]柠檬(决策单调性)
题意 题目链接 Sol 结论:每次选择的区间一定满足首位元素相同.. 仔细想想其实挺显然的,如果不相同可以删掉多着的元素,对答案的贡献是相同的 那么设\(f[i]\)表示到第\(i\)个位置的最大价值 ...
- 【BZOJ 4709】柠檬 斜率优化dp+单调栈
题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...
随机推荐
- windows查看系统版本号
win+R,输入cmd,确定,打开命令窗口,输入msinfo32,注意要在英文状态下输入,回车.然后在弹出的窗口中就可以看到系统的具体版本号了. win+R,输入cmd,确定,打开命令窗口,输入v ...
- (原创)python发送邮件
这段时间一直在学习flask框架,看到flask扩展中有一个mail插件,所以今天就给大家演示如果发邮件. 首先我注册了一个163邮箱,需要开启smtp功能,因为咱们python发送邮件经过的是smt ...
- Visual Studio设置字体及护眼背景色
打开vs 菜单栏选择: 工具 -> 选择 -> 环境 -> 字体和颜色,如图所示 字体可以如上选择,背景色选择项背景,点击自定义,如下设置即可.
- PHP手动环境搭建之WAMP
第一步:安装apache程序 首先需要去Apache官网下载Apache2.4(http://httpd.apache.org/download.cgi),操作如下图所示: 下载完成后把它解压出来,然 ...
- CentOS7部署ELK5.2
原文发表于cu:2017-02-10 参考文档: Elasticsearchyum文档:https://www.elastic.co/guide/en/elasticsearch/reference/ ...
- day05 字典 dict
今日内容: 字典 成对的保存数据. 以key:value的形式保存 用{}表示,每一项内容都是key:value, 每项数据之间用逗号隔开 字典中的key是不能重复的. 存储是依靠着key来计算的. ...
- linux 下 mysql安装和配置
最近在学习R语言,看到R与数据库交互这一部分,就自己动手实践了一下,数据库选择的是mysql,主要记录下linux下怎么安装mysql. 网上的很多资料都有相关的文章,这里只是记录下自己安装过程中遇到 ...
- linux下搭建python机器学习环境
前言 在 linux 下搭建 python 机器学习环境还是比较容易的,考虑到包依赖的问题,最好建立一个虚拟环境作为机器学习工作环境,在建立的虚拟环境中,再安装各种需要的包,主要有以下6个(这是看这个 ...
- spring-boot Jpa配置
spring.jpa.hibernate.ddl-auto ddl-auto:create----每次运行该程序,没有表格会新建表格,表内有数据会清空 ddl-auto:create-drop---- ...
- Qt应用程序重启
重启应用程序是一种常见的操作,在Qt中实现非常简单,需要用到QProcess类一个静态方法: // program, 要启动的程序名称 // arguments, 启动参数 bool startDet ...