bzoj1007-水平可见直线
题目
在平面直角坐标系上以\(y=kx+b\)的形式给出\(n (n\le 50000)\)条直线,求从无限高的地方能看到多少条直线。
分析
举几个例子发现我们要求的直线组成一个下凸的形状。所以我们只要找出直线围成的下凸包即可。
对直线排序,\(k\)从小到大,\(b\)从大到小,用一个栈维护一下。如果当前元素与栈顶元素的交点在栈顶元素与栈中第二个元素的交点的左边,那么弹出栈顶(模拟一下就知道了)。
代码
计算几何尽量避免除法,因为会有精度问题,一般移项转化成乘法计算。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=5e4+10;
struct line {
double k,b;
int id;
bool operator < (const line a) const {
return k==a.k?b>a.b:k<a.k;
}
} a[maxn],sta[maxn];
int top=0;
bool bid(line a,line b) {
return a.id<b.id;
}
bool ans[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) scanf("%lf%lf",&a[i].k,&a[i].b),a[i].id=i;
sort(a+1,a+n+1);
for (int i=1;i<=n;++i) {
while (top>1) if ((a[i].b-sta[top].b)*(sta[top-1].k-sta[top].k)<=(sta[top].b-sta[top-1].b)*(sta[top].k-a[i].k)) --top; else break;
sta[++top]=a[i];
}
for (int i=1;i<=top;++i) ans[sta[i].id]=true;
for (int i=1;i<maxn;++i) if (ans[i]) printf("%d ",i);
puts("");
}
bzoj1007-水平可见直线的更多相关文章
- BZOJ1007 水平相交直线
按照斜率排序,我们可以想象如果你能看到大于等于三条直线那么他一定会组成一个下凸包,这样我们只需要判断如果当前这条直线与栈顶第二直线相交点相比于栈顶第二直线与栈顶直线相交点靠左那么他就不满足凸包性质. ...
- 【BZOJ1007】水平可见直线(单调栈)
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的 ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2605 Solved: 914[Submit][Stat ...
- 【bzoj1007】[HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5932 Solved: 2254[Submit][Sta ...
- 水平可见直线 bzoj 1007
水平可见直线 (1s 128M) lines [问题描述] 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆 ...
- 【BZOJ 1007】 [HNOI2008]水平可见直线
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- BZOJ_1007_ [HNOI2008]_水平可见直线_(单调栈+凸包)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 给出一些直线,沿着y轴从上往下看,能看到多少条直线. 分析 由于直线相交,会遮挡住一些直 ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
随机推荐
- 20155308 2016-2017-2 《Java程序设计》实验3
20155308 2016-2017-2 <Java程序设计>实验3 实验内容 XP基础 XP核心实践 相关工具 实验步骤 (一)敏捷开发与XP 敏捷开发是一种以人为核心.迭代.循序渐进的 ...
- 20155338 ch02 ch03课下作业
20155338 ch02 ch03课下作业 要求: 1.补充完成课上测试(不能只有截图,要有分析,问题解决过程,新学到的知识点) 课上测试-3-ch02 1.编写一个程序 "week060 ...
- bzoj1854 [Scoi2010]游戏 ([SCOI2010]连续攻击游戏)
bzoj1854 [Scoi2010]游戏 ([SCOI2010]连续攻击游戏) 据说正解是并查集???我不会 这不是一道匈♂牙利好题吗??? 一个装备的两个属性都向它连边,然后跑一遍匈♂牙利 注意: ...
- HTML基本代码教学,第三天
HTML 今天由于个人情况,身体不适,但是为了大家的学习进度,咱们以纯文字得形式来简单了解下今天的学习内容 今儿咱们来了解下表单 <form id=" " name=&qu ...
- ConfigurationProperties cannot be resolved to a type
pom.xml 中报错之前: <parent> <groupId>org.springframework.boot</groupId> <artifactId ...
- dotweb now released to Version 1.5
dotweb released to Version 1.5!!https://github.com/devfeel/dotweb What's new? 重要:go版本适配升级为1.9+ New f ...
- 百度地图之自动提示--autoComplete
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 445. Cosine Similarity【LintCode java】
Description Cosine similarity is a measure of similarity between two vectors of an inner product spa ...
- Just a Hook:线段树+区间修改
E - Just a Hook In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most ...
- Python异常(基础) except
为什么要异常处理机制:在程序调用层数较深时,向主调函数传递错误信息需要层层return 返回比较麻烦,用异常处理机制可以较简单的传送错误信息 什么是错误 错误是指由于逻辑或语法等导致一个程序已无法正常 ...