python学习之路-day10
一、什么是线程
在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程。
线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程。
车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线。
流水线的工作需要电源,电源就相当于cpu
所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。
多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源。
例如,北京地铁与上海地铁是不同的进程,而北京地铁里的13号线是一个线程,北京地铁所有的线路共享北京地铁所有的资源,比如所有的乘客可以被所有线路拉。
二、线程的创建开销小
创建进程的开销要远大于线程?
如果我们的软件是一个工厂,该工厂有多条流水线,流水线工作需要电源,电源只有一个即cpu(单核cpu)
一个车间就是一个进程,一个车间至少一条流水线(一个进程至少一个线程)
创建一个进程,就是创建一个车间(申请空间,在该空间内建至少一条流水线)
而建线程,就只是在一个车间内造一条流水线,无需申请空间,所以创建开销小
进程之间是竞争关系,线程之间是协作关系?
车间直接是竞争/抢电源的关系,竞争(不同的进程直接是竞争关系,是不同的程序员写的程序运行的,迅雷抢占其他进程的网速,360把其他进程当做病毒干死)
一个车间的不同流水线式协同工作的关系(同一个进程的线程之间是合作关系,是同一个程序写的程序内开启动,迅雷内的线程是合作关系,不会自己干自己)
三、线程与进程的区别
1、线程共享创建它的进程的地址空间;进程有自己的地址空间
2、线程直接访问进程的内存空间;进程需要拷贝父进程的内存空间
3、线程可以直接与同一进程下的其他线程交流;而同一父进程下的子进程需要使用进程间通信交流
4、很容易创建新线程;新进程需要拷贝父进程
5、线程可以对相同进程的线程进行相当的控制;进程只能对子进程进行控制
6、对主线程的更改(取消、优先级更改等)可能影响进程的其他线程的行为;对父进程的更改不会影响子进程
四、为何要用多线程
多线程指的是,在一个进程中开启多个线程,简单的讲:如果多个任务共用一块地址空间,那么必须在一个进程内开启多个线程。
详细的讲分为4点:
1.、多线程共享一个进程的地址空间
2.、线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
3、若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
4、在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)
五、多线程的应用举例
开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。
六、Threading模块
multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍
官网链接:https://docs.python.org/3/library/threading.html?highlight=threading#
七、开启线程的两种方式
- from threading import Thread
- import time
- def sayhi(name):
- time.sleep(2)
- print('%s say hello' %name)
- if __name__ == '__main__':
- t=Thread(target=sayhi,args=('haha',))
- t.start()
- print('主线程')
方式一
- from threading import Thread
- import time
- class Sayhi(Thread):
- def __init__(self,name):
- super().__init__()
- self.name=name
- def run(self):
- time.sleep(2)
- print('%s say hello' % self.name)
- if __name__ == '__main__':
- t = Sayhi('haha')
- t.start()
- print('主线程')
方式二
八、在一个进程下开启多个线程与在一个进程下开启多个子进程的区别
- from threading import Thread
- from multiprocessing import Process
- def work():
- print('hello')
- if __name__ == '__main__':
- #在主进程下开启线程
- t=Thread(target=work)
- t.start()
- print('主线程/主进程')
- '''
- 打印结果:
- hello
- 主线程/主进程
- '''
- #在主进程下开启子进程
- t=Process(target=work)
- t.start()
- print('主线程/主进程')
- '''
- 打印结果:
- 主线程/主进程
- hello
- '''
谁的开启速度快
- from threading import Thread
- from multiprocessing import Process
- import os
- def work():
- print('hello',os.getpid())
- if __name__ == '__main__':
- #part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样
- t1=Thread(target=work)
- t2=Thread(target=work)
- t1.start()
- t2.start()
- print('主线程/主进程pid',os.getpid())
- #part2:开多个进程,每个进程都有不同的pid
- p1=Process(target=work)
- p2=Process(target=work)
- p1.start()
- p2.start()
- print('主线程/主进程pid',os.getpid())
看一下pid
- from threading import Thread
- from multiprocessing import Process
- import os
- def work():
- global n
- n=0
- if __name__ == '__main__':
- # n=100
- # p=Process(target=work)
- # p.start()
- # p.join()
- # print('主',n) #毫无疑问子进程p已经将自己的全局的n改成了0,但改的仅仅是它自己的,查看父进程的n仍然为100
- n=1
- t=Thread(target=work)
- t.start()
- t.join()
- print('主',n) #查看结果为0,因为同一进程内的线程之间共享进程内的数据
同一进程内的线程共享该进程的数据
九、线程相关的其他方法
- Thread实例对象的方法
- # isAlive(): 返回线程是否活动的。
- # getName(): 返回线程名。
- # setName(): 设置线程名。
- threading模块提供的一些方法:
- # threading.currentThread(): 返回当前的线程变量。
- # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
- # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
- from threading import Thread
- import threading
- from multiprocessing import Process
- import os
- def work():
- import time
- time.sleep(3)
- print(threading.current_thread().getName())
- if __name__ == '__main__':
- #在主进程下开启线程
- t=Thread(target=work)
- t.start()
- print(threading.current_thread().getName())
- print(threading.current_thread()) #主线程
- print(threading.enumerate()) #连同主线程在内有两个运行的线程
- print(threading.active_count())
- print('主线程/主进程')
- '''
- 打印结果:
- MainThread
- <_MainThread(MainThread, started 140735268892672)>
- [<_MainThread(MainThread, started 140735268892672)>, <Thread(Thread-1, started 123145307557888)>]
- 主线程/主进程
- Thread-1
- '''
方法示例
- from threading import Thread
- import time
- def sayhi(name):
- time.sleep(2)
- print('%s say hello' %name)
- if __name__ == '__main__':
- t=Thread(target=sayhi,args=('egon',))
- t.start()
- t.join()
- print('主线程')
- print(t.is_alive())
- '''
- egon say hello
- 主线程
- False
- '''
主线程等待子线程结束
十、守护线程
无论是进程还是线程,都遵循:守护xxx会等待主xxx运行完毕后被销毁
需要强调的是:运行完毕并非终止运行
- #1.对主进程来说,运行完毕指的是主进程代码运行完毕
- #2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕
详细解释:
- #1 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束,
- #2 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。
- from threading import Thread
- import time
- def sayhi(name):
- time.sleep(2)
- print('%s say hello' %name)
- if __name__ == '__main__':
- t=Thread(target=sayhi,args=('haha',))
- t.setDaemon(True) #必须在t.start()之前设置
- t.start()
- print('主线程')
- print(t.is_alive())
- '''
- 主线程
- True
- '''
- from threading import Thread
- import time
- def foo():
- print(123)
- time.sleep(1)
- print("end123")
- def bar():
- print(456)
- time.sleep(3)
- print("end456")
- t1=Thread(target=foo)
- t2=Thread(target=bar)
- t1.daemon=True
- t1.start()
- t2.start()
- print("main-------")
有些绕
十一、Python GIL(Global Interpreter Lock)
链接:http://www.cnblogs.com/linhaifeng/articles/7449853.html
十二、同步锁
- 三个需要注意的点:
- #1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来
- #2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高
- #3. 一定要看本小节最后的GIL与互斥锁的经典分析
GIL VS Lock
机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock?
首先我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据
然后,我们可以得出结论:保护不同的数据就应该加不同的锁。
最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock
过程分析:所有线程抢的是GIL锁,或者说所有线程抢的是执行权限
线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果
既然是串行,那我们执行
t1.start()
t1.join
t2.start()
t2.join()
这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。
- 因为Python解释器帮你自动定期进行内存回收,你可以理解为python解释器里有一个独立的线程,每过一段时间它起wake up做一次全局轮询看看哪些内存数据是可以被清空的,此时你自己的程序 里的线程和 py解释器自己的线程是并发运行的,假设你的线程删除了一个变量,py解释器的垃圾回收线程在清空这个变量的过程中的clearing时刻,可能一个其它线程正好又重新给这个还没来及得清空的内存空间赋值了,结果就有可能新赋值的数据被删除了,为了解决类似的问题,python解释器简单粗暴的加了锁,即当一个线程运行时,其它人都不能动,这样就解决了上述的问题, 这可以说是Python早期版本的遗留问题。
详细
- from threading import Thread
- import os,time
- def work():
- global n
- temp=n
- time.sleep(0.1)
- n=temp-1
- if __name__ == '__main__':
- n=100
- l=[]
- for i in range(100):
- p=Thread(target=work)
- l.append(p)
- p.start()
- for p in l:
- p.join()
- print(n) #结果可能为99
锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:
- import threading
- R=threading.Lock()
- R.acquire()
- '''
- 对公共数据的操作
- '''
- R.release()
- from threading import Thread,Lock
- import os,time
- def work():
- global n
- lock.acquire()
- temp=n
- time.sleep(0.1)
- n=temp-1
- lock.release()
- if __name__ == '__main__':
- lock=Lock()
- n=100
- l=[]
- for i in range(100):
- p=Thread(target=work)
- l.append(p)
- p.start()
- for p in l:
- p.join()
- print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全
- 分析:
- #1.100个线程去抢GIL锁,即抢执行权限
- #2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
- #3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
- #4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
GIL锁与互斥锁综合分析(重点!!!)
- #不加锁:并发执行,速度快,数据不安全
- from threading import current_thread,Thread,Lock
- import os,time
- def task():
- global n
- print('%s is running' %current_thread().getName())
- temp=n
- time.sleep(0.5)
- n=temp-1
- if __name__ == '__main__':
- n=100
- lock=Lock()
- threads=[]
- start_time=time.time()
- for i in range(100):
- t=Thread(target=task)
- threads.append(t)
- t.start()
- for t in threads:
- t.join()
- stop_time=time.time()
- print('主:%s n:%s' %(stop_time-start_time,n))
- '''
- Thread-1 is running
- Thread-2 is running
- ......
- Thread-100 is running
- 主:0.5216062068939209 n:99
- '''
- #不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
- from threading import current_thread,Thread,Lock
- import os,time
- def task():
- #未加锁的代码并发运行
- time.sleep(3)
- print('%s start to run' %current_thread().getName())
- global n
- #加锁的代码串行运行
- lock.acquire()
- temp=n
- time.sleep(0.5)
- n=temp-1
- lock.release()
- if __name__ == '__main__':
- n=100
- lock=Lock()
- threads=[]
- start_time=time.time()
- for i in range(100):
- t=Thread(target=task)
- threads.append(t)
- t.start()
- for t in threads:
- t.join()
- stop_time=time.time()
- print('主:%s n:%s' %(stop_time-start_time,n))
- '''
- Thread-1 is running
- Thread-2 is running
- ......
- Thread-100 is running
- 主:53.294203758239746 n:0
- '''
- #有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
- #没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
- #start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
- #单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
- from threading import current_thread,Thread,Lock
- import os,time
- def task():
- time.sleep(3)
- print('%s start to run' %current_thread().getName())
- global n
- temp=n
- time.sleep(0.5)
- n=temp-1
- if __name__ == '__main__':
- n=100
- lock=Lock()
- start_time=time.time()
- for i in range(100):
- t=Thread(target=task)
- t.start()
- t.join()
- stop_time=time.time()
- print('主:%s n:%s' %(stop_time-start_time,n))
- '''
- Thread-1 start to run
- Thread-2 start to run
- ......
- Thread-100 start to run
- 主:350.6937336921692 n:0 #耗时是多么的恐怖
- '''
互斥锁与join的区别(重点!!!)
十三、死锁现象与递归锁
进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁
- from threading import Thread,Lock
- import time
- mutexA=Lock()
- mutexB=Lock()
- class MyThread(Thread):
- def run(self):
- self.func1()
- self.func2()
- def func1(self):
- mutexA.acquire()
- print('\033[41m%s 拿到A锁\033[0m' %self.name)
- mutexB.acquire()
- print('\033[42m%s 拿到B锁\033[0m' %self.name)
- mutexB.release()
- mutexA.release()
- def func2(self):
- mutexB.acquire()
- print('\033[43m%s 拿到B锁\033[0m' %self.name)
- time.sleep(2)
- mutexA.acquire()
- print('\033[44m%s 拿到A锁\033[0m' %self.name)
- mutexA.release()
- mutexB.release()
- if __name__ == '__main__':
- for i in range(10):
- t=MyThread()
- t.start()
- '''
- Thread-1 拿到A锁
- Thread-1 拿到B锁
- Thread-1 拿到B锁
- Thread-2 拿到A锁
- 然后就卡住,死锁了
- '''
解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
- mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
十四、信号量Semaphore
同进程的一样
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):
- from threading import Thread,Semaphore
- import threading
- import time
- # def func():
- # if sm.acquire():
- # print (threading.currentThread().getName() + ' get semaphore')
- # time.sleep(2)
- # sm.release()
- def func():
- sm.acquire()
- print('%s get sm' %threading.current_thread().getName())
- time.sleep(3)
- sm.release()
- if __name__ == '__main__':
- sm=Semaphore(5)
- for i in range(23):
- t=Thread(target=func)
- t.start()
与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程
十五、event
同进程的一样
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行
- event.isSet():返回event的状态值;
- event.wait():如果 event.isSet()==False将阻塞线程;
- event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
- event.clear():恢复event的状态值为False。
例如,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作
- from threading import Thread,Event
- import threading
- import time,random
- def conn_mysql():
- count=1
- while not event.is_set():
- if count > 3:
- raise TimeoutError('链接超时')
- print('<%s>第%s次尝试链接' % (threading.current_thread().getName(), count))
- event.wait(0.5)
- count+=1
- print('<%s>链接成功' %threading.current_thread().getName())
- def check_mysql():
- print('\033[45m[%s]正在检查mysql\033[0m' % threading.current_thread().getName())
- time.sleep(random.randint(2,4))
- event.set()
- if __name__ == '__main__':
- event=Event()
- conn1=Thread(target=conn_mysql)
- conn2=Thread(target=conn_mysql)
- check=Thread(target=check_mysql)
- conn1.start()
- conn2.start()
- check.start()
十六、定时器
定时器,指定n秒后执行某操作
- from threading import Timer
- def hello():
- print("hello, world")
- t = Timer(1, hello)
- t.start() # after 1 seconds, "hello, world" will be printed
十七、线程queue
queue队列 :使用import queue,用法与进程Queue一样
队列在线程编程中特别有用,因为信息必须在多线程之间安全交换
class queue.
Queue
(maxsize=0) #先进先出
- import queue
- q=queue.Queue()
- q.put('first')
- q.put('second')
- q.put('third')
- print(q.get())
- print(q.get())
- print(q.get())
- '''
- 结果(先进先出):
- first
- second
- third
- '''
class queue.
LifoQueue
(maxsize=0) #last in fisrt out
- import queue
- q=queue.LifoQueue()
- q.put('first')
- q.put('second')
- q.put('third')
- print(q.get())
- print(q.get())
- print(q.get())
- '''
- 结果(后进先出):
- third
- second
- first
- '''
class queue.
PriorityQueue
(maxsize=0) #存储数据时可设置优先级的队列
- import queue
- q=queue.PriorityQueue()
- #put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
- q.put((20,'a'))
- q.put((10,'b'))
- q.put((30,'c'))
- print(q.get())
- print(q.get())
- print(q.get())
- '''
- 结果(数字越小优先级越高,优先级高的优先出队):
- (10, 'b')
- (20, 'a')
- (30, 'c')
- '''
python学习之路-day10的更多相关文章
- ql的python学习之路-day10
前言:本节主要讲解迭代器和生成器 迭代器&生成器 一.生成器(generator) 循环占用大部分的容量内存,如果只需要循环前面的几个结果那怎么样做呢,在python中有一种一边循环一边计算的 ...
- python学习之路-day2-pyth基础2
一. 模块初识 Python的强大之处在于他有非常丰富和强大的标准库和第三方库,第三方库存放位置:site-packages sys模块简介 导入模块 import sys 3 sys模 ...
- Python学习之路-Day2-Python基础3
Python学习之路第三天 学习内容: 1.文件操作 2.字符转编码操作 3.函数介绍 4.递归 5.函数式编程 1.文件操作 打印到屏幕 最简单的输出方法是用print语句,你可以给它传递零个或多个 ...
- Python学习之路-Day2-Python基础2
Python学习之路第二天 学习内容: 1.模块初识 2.pyc是什么 3.python数据类型 4.数据运算 5.bytes/str之别 6.列表 7.元组 8.字典 9.字符串常用操作 1.模块初 ...
- Python学习之路-Day1-Python基础
学习python的过程: 在茫茫的编程语言中我选择了python,因为感觉python很强大,能用到很多领域.我自己也学过一些编程语言,比如:C,java,php,html,css等.但是我感觉自己都 ...
- python学习之路网络编程篇(第四篇)
python学习之路网络编程篇(第四篇) 内容待补充
- Python学习之路【第一篇】-Python简介和基础入门
1.Python简介 1.1 Python是什么 相信混迹IT界的很多朋友都知道,Python是近年来最火的一个热点,没有之一.从性质上来讲它和我们熟知的C.java.php等没有什么本质的区别,也是 ...
- python 学习之路开始了
python 学习之路开始了.....记录点点滴滴....
- python学习之路,2018.8.9
python学习之路,2018.8.9, 学习是一个长期坚持的过程,加油吧,少年!
随机推荐
- 使用tensorflow深度学习识别验证码
除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tesso ...
- Java精选笔记_Filter(过滤器)
Filter(过滤器) Filter入门 什么是Filter Filter被称作过滤器或者拦截器,其基本功能就是对Servlet容器调用Servlet的过程进行拦截,从而在Servlet进行响应处理前 ...
- Java编程基本概念
1.标识符 ①用于给变量.类和方法命名(类名首字母大写,变量和方法名首字母小写并遵循驼峰原则)②标识符的命名规范: ■标识符必须以字母.下划线和美元符$开头. ■标识符其他部分可以是字母.下划线.美元 ...
- OracleServiceORCL这个服务竟然不见了
OracleServiceORCL这个服务竟然不见了,后数据库连接不成功,晕死,以前使用数据库还能看到,现在竟然不见了?Why?我猜测原因有二: ①:电脑已经装了Oracle数据库后又装了MySql数 ...
- c++ 函数返回研究[转]
一,c++函数的返回分为以下几种情况 1)主函数main的返回值:这里提及一点,返回0表示程序运行成功. 2)返回非引用类型:函数的返回值用于初始化在跳用函数出创建的临时对象.用函数返回值初始化临时对 ...
- [转帖]双剑合璧:CPU+GPU异构计算完全解析
引用自:http://tech.sina.com.cn/mobile/n/2011-06-20/18371792199.shtml 这篇文章写的深入浅出,把异构计算的思想和行业趋势描述的非常清楚,难得 ...
- 【BZOJ1877】[SDOI2009]晨跑 最小费用最大流
[BZOJ1877][SDOI2009]晨跑 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现 ...
- 微信小程序 --- 组件
view组件:小程序使用最多的组件.可以理解为 div: Text组件:用于展示文字.可以理解为 p span 标签.(除了Text组件以外的其他组件都无法被长按选中) Text组件无法解析HTML, ...
- stm32的VCC/VDD/VSS/VEE/VBAT的区别
先看一下stm32vet6的引脚图吧 电路设计以及PCB制作中,经常碰见电源符号:VCC. VDD.VEE.VSS,他们具有什么样的关系那? 一.解释 VCC:C=circuit 表示电路的意思, 即 ...
- Python 自学积累(二)
1. onfigParser 模块用于操作配置文件 注:Parser汉译为“解析”之意. 配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数( ...