A. Splitting into digits

Solved.

 #include <bits/stdc++.h>
using namespace std; int n; void solve()
{
printf("%d\n", n);
for (int i = ; i <= n; ++i) printf("%d%c", , " \n"[i == n]);
} int main()
{
while (scanf("%d", &n) != EOF)
solve();
return ;
}

B. Game with string

Solved.

 #include <bits/stdc++.h>
using namespace std; #define N 100010
char s[N]; int main()
{
while (scanf("%s", s + ) != EOF)
{
stack <char> sta;
int cnt = ;
for (int i = , len = strlen(s + ); i <= len; ++i)
{
if (!sta.empty() && sta.top() == s[i]) sta.pop(), ++cnt;
else sta.push(s[i]);
}
puts(cnt & ? "Yes" : "No");
}
return ;
}

C. Grid game

Solved.

 #include <bits/stdc++.h>
using namespace std; #define N 1010
char s[N]; int main()
{
while (scanf("%s", s + ) != EOF)
{
int x = , y = ;
for (int i = , len = strlen(s + ); i <= len; ++i)
{
if (s[i] == '')
{
printf("%d %d\n", , x % ? : );
++x;
}
else
{
printf("%d %d\n", , y % + );
++y;
}
}
}
return ;
}

D. Game with modulo

Solved.

题意:

交互题

猜数,猜一个$a$

每次询问格式为$(x, y)$

返回结果有两种

$x \;if (x \; mod\; a) >= (y \;mod\; a)$

$y \;if (x \;mod\; a) < (y \;mod\; a) $

思路:

我们考虑 从小到大倍增,去找到$a的一个单调范围$

比如说$1, 2, 4, 8, 16, 32  如果某一次询问中返回了x$

那么说明$a在询问的(x, y)范围中  并且2 \cdot a 不在这个范围内$

因为是从小到大进行倍增

那么我们考虑某一次询问是$(x, 2\cdot x)$

$a在其中$

$如果 a > x, 那么必然有x >= 2 \cdot x -  a$

$如果a = x  那么必然有 x \;mod\;a = 2 \cdot x \;mod\; a$

那么这个区间就具有一个单调性,可以进行二分

 #include <bits/stdc++.h>
using namespace std; char op[]; bool check(int x, int y)
{
printf("? %d %d\n", x, y);
fflush(stdout);
scanf("%s", op);
return op[] == 'y';
} void solve(int l, int r)
{
int base = ;
for (int i = l; i <= r; i += base, base <<= )
{
printf("? %d %d\n", i, i + base);
fflush(stdout);
scanf("%s", op);
if (op[] == 'x')
{
int l = i + , r = i + base - , res = -;
while (r - l >= )
{
int mid = (l + r) >> ;
if (check(i, mid))
{
l = mid + ;
res = mid;
}
else
{
r = mid - ;
}
}
if (res == -) res = i;
printf("! %d\n", res + );
fflush(stdout);
return;
}
} } int main()
{
while (scanf("%s", op) && op[] != 'e')
solve(, );
return ;
}

E. Johnny Solving

Upsolved.

题意:

给出一个无向图,没有重边和自环,每个点的度数至少是3

要求找出一个长度至少为$\frac{n}{k}的简单路径$

或者找出$至少k个环,每个环的长度至少为3,并且环的长度不被3整除,并且环中有一个点只属于这个环$

思路:

首先跑一棵$DFS树,如果某个叶子结点的深度>= \frac{n}{k} 那么直接输出这条简单路径$

$否则叶子结点个数肯定大于 k 个$

证明

$我们假设每个叶子结点到根节点的距离为x_1, x_2, \cdots x_c$

那么$x_1 + x_2 + \cdots + x_c >= n$

$那么根据抽屉原理 max(x_1, x_2, \cdots x_c) >= \frac{n}{c}$

$又 \frac {n}{c} < \frac{n}{k} 所以 c > k$

再考虑对于一个叶子结点u来说,它度数至少为$3$

$考虑 它的两条返祖边连向x, y  我们令deep[x] < deep[y]$

$那么这个时候有三个环 dist(x,u) + 1, dist(y, u) + 1, dist(x, y) + 2$

$首先证明三个环的长度都>= 3$

$因为没有重边,所以dist(x, u) 和 dist(y, u) >= 2 = 3 - 1$

$又x和y是不同的两点 所以 dist(x, y) >= 1 = 3 - 2$

$再证明三个环的长度至少有一个不被3整除$

$我们假设三个环的长度都被3整除,那么有$

$(dist(x, u) + 1) \% 3 == 0$

$(dist(y, u) + 1) \% 3 == 0$

$(dist(x, y) + 1) \% 3 == 0$

$又 dist(x, u) = (dist(y, u) + dist(x, y))$

$所以 dist(x, y) \% 3 == 0$

那么$(dist(x, y) + 2) \% 3 != 0$

$与已知矛盾, 得证$

 #include <bits/stdc++.h>
using namespace std; #define N 300010
int n, m ,k;
vector <int> G[N]; int fa[N], vis[N], deep[N], Max, pos;
void DFS(int u)
{
vis[u] = ;
if (deep[u] > Max)
{
Max = deep[u];
pos = u;
}
for (auto v : G[u]) if (!vis[v])
{
fa[v] = u;
deep[v] = deep[u] + ;
DFS(v);
}
} vector < vector <int> > res;
int isleaf[N];
void work(int u)
{
vis[u] = ;
if (!isleaf[u])
{
if (res.size() >= k) return;
int x = -, y = -;
for (auto v : G[u]) if (v != fa[u])
{
if (x == -) x = v;
else if (y == -) y = v;
else break;
}
if (deep[x] > deep[y]) swap(x, y);
vector <int> tmp; int it = -, top = -;
if ((deep[u] - deep[y] + ) % )
{
it = u; top = fa[y];
}
else if ((deep[u] - deep[x] + ) % )
{
it = u; top = fa[x];
}
else
{
tmp.push_back(u);
it = y; top = fa[x];
}
while (it != top) tmp.push_back(it), it = fa[it];
res.push_back(tmp);
}
else for (auto v : G[u]) if (!vis[v]) work(v);
} int main()
{
while (scanf("%d%d%d", &n, &m, &k) != EOF)
{
for (int i = ; i <= n; ++i) G[i].clear();
for (int i = , u, v; i <= m; ++i)
{
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
deep[] = ; Max = ;
fa[] = ;
DFS();
if (Max > n / k)
{
puts("PATH");
vector <int> res;
int it = pos;
while (it)
{
res.push_back(it);
it = fa[it];
}
int len = res.size();
printf("%d\n", len);
for (int i = ; i < len; ++i) printf("%d%c", res[i], " \n"[i == len - ]);
}
else
{
puts("CYCLES");
memset(vis, , sizeof vis);
memset(isleaf, , sizeof isleaf);
for (int i = ; i <= n; ++i) isleaf[fa[i]] = ;
work();
for (int i = ; i < k; ++i)
{
auto it = res[i];
int len = it.size();
printf("%d\n", len);
for (int j = ; j < len; ++j) printf("%d%c", it[j], " \n"[j == len - ]);
}
}
}
return ;
}

Codeforces Round #534 (Div. 2) Solution的更多相关文章

  1. Codeforces Round #466 (Div. 2) Solution

    从这里开始 题目列表 小结 Problem A Points on the line Problem B Our Tanya is Crying Out Loud Problem C Phone Nu ...

  2. 老年OIer的Python实践记—— Codeforces Round #555 (Div. 3) solution

    对没错下面的代码全部是python 3(除了E的那个multiset) 题目链接:https://codeforces.com/contest/1157 A. Reachable Numbers 按位 ...

  3. Codeforces Round #545 (Div. 1) Solution

    人生第一场Div. 1 结果因为想D想太久不晓得Floyd判环法.C不会拆点.E想了个奇奇怪怪的set+堆+一堆乱七八糟的标记的贼难写的做法滚粗了qwq靠手速上分qwqqq A. Skyscraper ...

  4. Codeforces Round #534 (Div. 2)D. Game with modulo-1104-D(交互+二分+构造)

    D. Game with modulo time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Codeforces Round 500 (Div 2) Solution

    从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...

  6. [ACM]Codeforces Round #534 (Div. 2)

    A. Splitting into digits Vasya has his favourite number n. He wants to split it to some non-zero dig ...

  7. Codeforces 1104 D. Game with modulo-交互题-二分-woshizhizhang(Codeforces Round #534 (Div. 2))

    D. Game with modulo time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #534 (Div. 2) D. Game with modulo(取余性质+二分)

    D. Game with modulo 题目链接:https://codeforces.com/contest/1104/problem/D 题意: 这题是一个交互题,首先一开始会有一个数a,你最终的 ...

  9. Codeforces Round #607 (Div. 1) Solution

    从这里开始 比赛目录 我又不太会 div 1 A? 我菜爆了... Problem A Cut and Paste 暴力模拟一下. Code #include <bits/stdc++.h> ...

随机推荐

  1. excel中,一系列单元格中包含某一个字段的单元格数量?

    excel中,一系列单元格中包含某一个字段的单元格数量?这个怎么写公式?如:A列单元格A1-A7的内容分别为 A.AB.BC.AC.CD.AD.EA,怎么数这一列中几个单元格的内容包含A字母? 任意单 ...

  2. 【RF库Collections测试】Dictionary Should Not Contain Value

    Name:Dictionary Should Not Contain ValueSource:Collections <test library>Arguments:[ dictionar ...

  3. ExtJs 6.0+快速入门,ext-bootstrap.js文件的分析,各版本API下载

    ExtJS6.0+快速入门+API下载地址 ExtAPI 下载地址如下,包含各个版本 http://docs.sencha.com/misc/guides/offline_docs.html 1.使用 ...

  4. Parquet存储格式 - 论文翻译【转】

    Apache Parquet是Hadoop生态圈中一种新型列式存储格式,它可以兼容Hadoop生态圈中大多数计算框架(Mapreduce.Spark等),被多种查询引擎支持(Hive.Impala.D ...

  5. c++11实现异步定时器

    c++11提供了丰富的时间和线程操作函数,比如 std::this_thread::sleep, std::chrono::seconds等.可以利用这些来很方便的实现一个定时器.     定时器要求 ...

  6. LeetCode——Missing Number

    Description: Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one t ...

  7. 删除编辑文件警告Swap file “…” already exists!

    Linux下多个用户同时编辑一个文件,或编辑时非正常关闭,再下次编辑打开文件时均为显示如下警告信息: Swap file "test.xml.swp" already exists ...

  8. LINUX IPTABLES 防火墙配置

     0.iptables(ACL)的匹配原则: 与cisco等一致,从上到下依次匹配. 1.iptables的基本用法:. (1)命令格式 iptables [–ttable] command [mat ...

  9. maven setting详细解读

    全局配置: ${M2_HOME}/conf/settings.xml 用户配置: ${user.home}/.m2/settings.xml note:用户配置优先于全局配置.${user.home} ...

  10. SpringMVC XXX-servlet.xml ApplicationContext.xml

    因为直接使用了SpringMVC,所以之前一直不明白xxx-servlet.xml和applicationContext.xml是如何区别的,其实如果直接使用SpringMVC是可以不添加applic ...