IV: 某个特征中 某个小分组的 响应比例与未响应比例之差 乘以 响应比例与未响应比例的比值取对数

数据挖掘模型中的IV和WOE详解

http://blog.csdn.net/kevin7658/article/details/50780391

用 iv而不用woe原因:

4.关于IV和WOE的进一步思考

 

4.1 为什么用IV而不是直接用WOE

 

从上面的内容来看,变量各分组的WOE和IV都隐含着这个分组对目标变量的预测能力这样的意义。那我们为什么不直接用WOE相加或者绝对值相加作为衡量一个变量整体预测能力的指标呢?

并且,从计算公式来看,对于变量的一个分组,IV是WOE乘以这个分组响应占比和未响应占比的差。而一个变量的IV等于各分组IV的和。如果愿意,我们同样也能用WOE构造出一个这样的一个和出来,我们只需要把变量各个分组的WOE和取绝对值再相加,即(取绝对值是因为WOE可正可负,如果不取绝对值,则会把变量的区分度通过正负抵消的方式抵消掉):

那么我们为什么不直接用这个WOE绝对值的加和来衡量一个变量整体预测能力的好坏,而是要用WOE处理后的IV呢。

我们这里给出两个原因。IV和WOE的差别在于IV在WOE基础上乘以的那个,我们暂且用pyn来代表这个值。

第一个原因,当我们衡量一个变量的预测能力时,我们所使用的指标值不应该是负数,否则,说一个变量的预测能力的指标是-2.3,听起来很别扭。从这个角度讲,乘以pyn这个系数,保证了变量每个分组的结果都是非负数,你可以验证一下,当一个分组的WOE是正数时,pyn也是正数,当一个分组的WOE是负数时,pyn也是负数,而当一个分组的WOE=0时,pyn也是0。

当然,上面的原因不是最主要的,因为其实我们上面提到的这个指标也可以完全避免负数的出现。

更主要的原因,也就是第二个原因是,乘以pyn后,体现出了变量当前分组中个体的数量占整体个体数量的比例,对变量预测能力的影响。怎么理解这句话呢?我们还是举个例子。

假设我们上面所说的营销响应模型中,还有一个变量A,其取值只有两个:0,1,数据如下:

我们从上表可以看出,当变量A取值1时,其响应比例达到了90%,非常的高,但是我们能否说变量A的预测能力非常强呢?不能。为什么呢?原因就在于,A取1时,响应比例虽然很高,但这个分组的客户数太少了,占的比例太低了。虽然,如果一个客户在A这个变量上取1,那他有90%的响应可能性,但是一个客户变量A取1的可能性本身就非常的低。所以,对于样本整体来说,变量的预测能力并没有那么强。我们分别看一下变量各分组和整体的WOE,IV。

从这个表我们可以看到,变量取1时,响应比达到90%,对应的WOE很高,但对应的IV却很低,原因就在于IV在WOE的前面乘以了一个系数,而这个系数很好的考虑了这个分组中样本占整体样本的比例,比例越低,这个分组对变量整体预测能力的贡献越低。相反,如果直接用WOE的绝对值加和,会得到一个很高的指标,这是不合理的。

数据挖掘模型中的IV和WOE详解的更多相关文章

  1. 转载:数据挖掘模型中的IV和WOE详解

    1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变 ...

  2. 评分卡模型中的IV和WOE详解

    1.IV的用途   IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选 ...

  3. 特征工程中的IV和WOE详解

    1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变 ...

  4. HTML中元素的position属性详解

    HTML中元素的position属性详解 转载自:https://blog.csdn.net/wangzunkuan/article/details/81540935   HTML中DOM元素有5种定 ...

  5. Linux中Nginx安装与配置详解

    转载自:http://www.linuxidc.com/Linux/2016-08/134110.htm Linux中Nginx安装与配置详解(CentOS-6.5:nginx-1.5.0). 1 N ...

  6. 利用python求解物理学中的双弹簧质能系统详解

    利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...

  7. Linux中/proc目录下文件详解

    转载于:http://blog.chinaunix.net/uid-10449864-id-2956854.html Linux中/proc目录下文件详解(一)/proc文件系统下的多种文件提供的系统 ...

  8. JQuery在循环中绑定事件的问题详解

    JQuery在循环中绑定事件的问题详解 有个页面上需要N个DOM,每个DOM里面的元素ID都要以数字结尾,比如说 ? 1 2 3 <input type="text" nam ...

  9. C#中的Linq to Xml详解

    这篇文章主要介绍了C#中的Linq to Xml详解,本文给出转换步骤以及大量实例,讲解了生成xml.查询并修改xml.监听xml事件.处理xml流等内容,需要的朋友可以参考下 一.生成Xml 为了能 ...

随机推荐

  1. bacnet ip转MQTT

    迈思德网关最新支持BACNET IP协议,可以将BACNET IP转换为MODBUS.MQTT.OPC等协议,与百度天工,阿里云等无缝对接. 支持AI.AO.DI.DO.AV.DV六个对象的读写.

  2. Hibernate对象的三种状态,瞬时态、持久态、游离态

    1.瞬时态.(new完一个对象,突然断电,内存中没有此对象) hibernate中什么时候的对象为瞬时态呢,当我们new 一个对象时,还没有save时,它就是瞬时态的,当我们delete一个对象时,它 ...

  3. BZOJ4372: 烁烁的游戏【动态点分治】

    Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠. 题意: 给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠. 烁烁他每次会跳到一个节点u,把周围与他距离不超过d的节点各吸引出w ...

  4. 小数第n位

    问题描述 我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数. 如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式. 本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始 ...

  5. 2018-2019-2 《网络对抗技术》Exp2 后门原理与实践 20165222

    Exp2 后门原理与实践 实验环境 win7ip地址为: 192.168.136.130 kali.ip地址为: 192.168.136.129 两台虚拟机可以ping通 实验步骤 1,使用netca ...

  6. 《FDTD electromagnetic field using MATLAB》读书笔记 Figure 1.2

    函数f(x)用采样间隔Δx=π/5进行采样,使用向前差商.向后差商和中心差商三种公式来近似一阶导数. 书中代码: %% ---------------------------------------- ...

  7. 10013: 以一种访问权限不允许的方式做了一个访问套接字的尝试【WCF异常】

    错误代码:10013 异常描述:侦听 IP 终结点=0.0.0.0:6666 时出现 TCP 错误(10013: 以一种访问权限不允许的方式做了一个访问套接字的尝试.). 解决方式:由于端口6666被 ...

  8. 设计模式(Python)-策略模式

    本系列文章是希望将软件项目中最常见的设计模式用通俗易懂的语言来讲解清楚,并通过Python来实现,每个设计模式都是围绕如下三个问题: 为什么?即为什么要使用这个设计模式,在使用这个模式之前存在什么样的 ...

  9. i2c接口笔记

    一. i2c基础知识 1. NACK信号:当在第9个时钟脉冲的时候SDA线保持高电平,就被定义为NACK信号.Master要么产生STOP条件来放弃这次传输,或者重复START条件来发起一个新的开始. ...

  10. kudu 虚拟机环境使用

      安装 curl -s https://raw.githubusercontent.com/cloudera/kudu-examples/master/demo-vm-setup/bootstrap ...