跟我学算法-tensorflow 实现卷积神经网络附带保存和读取
这里的话就不多说明了,因为上上一个博客已经说明了
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('data/', one_hot=True) # 构造初始化参数, 方差为0.1
n_input = 784
n_output = 10
weights = {
'wc1' : tf.Variable(tf.truncated_normal([3, 3, 1, 64], stddev=0.1)),
'wc2' : tf.Variable(tf.truncated_normal([3, 3, 64, 128], stddev=0.1)),
'wd1' : tf.Variable(tf.truncated_normal([7*7*128, 1024], stddev=0.1)),
'wd2' : tf.Variable(tf.truncated_normal([1024, n_output], stddev=0.1)) } biases = {
'b1' : tf.Variable(tf.truncated_normal([64], stddev=0.1)),
'b2' : tf.Variable(tf.truncated_normal([128], stddev=0.1)),
'bd1' : tf.Variable(tf.truncated_normal([1024], stddev=0.1)),
'bd2' : tf.Variable(tf.truncated_normal([n_output], stddev=0.1)) } def conv_basic(_input, _w, _b, _keepratio): _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
#进行卷积操作
_conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
# 使用激活函数
_conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
# 进行池化操作, padding='SAME', 表示维度不足就补齐
_pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], padding='SAME')
#去除一部分数据
_pool1_dr1 = tf.nn.dropout(_pool1, _keepratio)
#第二次卷积操作
_conv2 = tf.nn.conv2d(_pool1_dr1, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
# 使用激活函数
_conv2 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
# 进行池化操作
_pool2 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], padding='SAME')
_pool_dr2 = tf.nn.dropout(_pool1, _keepratio) # 第一次全连接操作
# 对_pool_dr2 根据wd1重新构造函数
_densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
_fcl = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1'], _b['bd1'])))
_fc_dr1 = tf.nn.dropout(_fcl, _keepratio)
# 第二次全连接
_out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
out = {'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
'fcl': _fcl, 'fc_dr1': _fc_dr1, 'out': _out
}
return out x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
keepratio = tf.placeholder(tf.float32) # FUNCTIONS # 构造cost函数
#获得预测结果
_pred =conv_basic(x, weights, biases, keepratio)['out']
# 输入预测结果与真实值构造cost 函数
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y))
# 优化函数使得cost最小
optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
# 计算准确率
_corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(_corr, tf.float32))
init = tf.global_variables_initializer() # 进行训练
sess = tf.Session()
sess.run(init)
save_step = 1
# 每次只保存3个值
saver = tf.train.Saver(max_to_keep=3)
#迭代次数
training_epochs = 15
# 每次训练的样本数
batch_size = 16
#循环打印的次数
display_step = 1
do_train = 1
if do_train == 1:
for epoch in range(training_epochs):
avg_cost = 0.
#total_batch = int(mnist.train.num_examples/batch_size)
total_batch = 10
# Loop over all batches
for i in range(total_batch):
# 提取训练数据和标签
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#训练模型优化参数
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})
# 加和损失值
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch # Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
print (" Training accuracy: %.3f" % (train_acc))
#test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})
#print (" Test accuracy: %.3f" % (test_acc))
if epoch % save_step == 0:
saver.save(sess, "save/nets/cnn_mnist_basic.ckpt-" + str(epoch))
print ("OPTIMIZATION FINISHED") if do_train == 0:
epoch = training_epochs - 1
saver.restore(sess, "save/nets/cnn_mnist_basic.ckpt-" + str(epoch))
# 对测试集进行测试
feed_test = {x: mnist.test.images, y: mnist.test.labels, keepratio:1.}
test_acc = sess.run(accr, feed_dict=feed_test)
print(test_acc)
跟我学算法-tensorflow 实现卷积神经网络附带保存和读取的更多相关文章
- 跟我学算法-tensorflow 实现卷积神经网络
我们采用的卷积神经网络是两层卷积层,两层池化层和两层全连接层 我们使用的数据是mnist数据,数据训练集的数据是50000*28*28*1 因为是黑白照片,所以通道数是1 第一次卷积采用64个filt ...
- TensorFlow实现卷积神经网络
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- Python之TensorFlow的卷积神经网络-5
一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
- Tensorflow之卷积神经网络(CNN)
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...
- 字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别CNN
本项目使用卷积神经网络识别字符型图片验证码,其基于 TensorFlow 框架.它封装了非常通用的校验.训练.验证.识别和调用 API,极大地减低了识别字符型验证码花费的时间和精力. 项目地址: ht ...
随机推荐
- mysqli使用记录
1.批量插入数据insert 方式一:insert into tableName (id,name,age) values ('1','张三','12'),('2','李四','16'),('3',' ...
- JavaScript运算符:递增和递减(++i,--i 和 i++,i-- 的区别)
递增和递减操作符直接借鉴自C,而且各有两个版本:前置型 (递增 ++i ,递减 --i )和 后置型 (递增 i++ ,递减 i-- ).书本上对两者的定义是:前置型应该位于要操作的变量之前,而后置型 ...
- MongoDB驱动程序快速入门
http://mongodb.github.io/mongo-java-driver/3.6/driver/getting-started/quick-start/
- 什么是API?我们常说调用API
如果你不知道 API 是什么,说明你英语真的很差. API 就是 Application Programming Interface 三个单词,如果你不能顾名思义的话,我就举例说明. 1. DOM A ...
- 升级安装windows8.1以后windowsphone8不能启动虚拟机的办法
如果之前在的虚拟机是OK的话,VS2012需要安装update3补丁才可以. 下载地址:http://download.microsoft.com/download/D/4/8/D48D1AC2-A2 ...
- Kotlin Reference (十一) Visibility Modifiers
most from reference 类,对象,接口,构造函数,函数,属性及setters具有可见性修饰符(getter总是具有和属性一样的可见性).在kotlin中油4个可视化修饰符:privat ...
- cousera 深度学习 吴恩达 第一课 第二周 学习率对优化结果的影响
本文代码实验地址: https://github.com/guojun007/logistic_regression_learning_rate cousera 上的作业是 编写一个 logistic ...
- 《DSP using MATLAB》Problem 3.3
按照题目的意思需要利用DTFT的性质,得到序列的DTFT结果(公式表示),本人数学功底太差,就不写了,直接用 书中的方法计算并画图. 代码: %% -------------------------- ...
- TypeScript学习笔记(六) - 模块
本篇将介绍TypeScript里的模块,和使用方法. 在ECMAScript 2015标准里,JavaScript新增了模块的概念.TypeScript也沿用了这个概念. 一.模块的导入和导出 模块在 ...
- kudu 虚拟机环境使用
安装 curl -s https://raw.githubusercontent.com/cloudera/kudu-examples/master/demo-vm-setup/bootstrap ...