The Unique MST
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 20737   Accepted: 7281

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique. 



Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 

1. V' = V. 

2. T is connected and acyclic. 



Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all
the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a
triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
题意:判断最小生成树是否唯一;
分析:最小生成树的值和次小生成树的值相等则不唯一;
程序:
#include"stdio.h"
#include"string.h"
#define inf 100000000
#define M 1111
int G[M][M],maxd[M][M],use[M],dis[M],pre[M],vis[M][M];
int max(int a,int b)
{
return a>b?a:b;
}
int min(int a,int b)
{
return a<b?a:b;
}
int dij(int u,int n)
{
int ans=0,i,j;
memset(use,0,sizeof(use));
memset(maxd,0,sizeof(maxd));//记录不在任意两点在在生成树的路径中的最长边
memset(vis,0,sizeof(vis));//标记边是否在生成树里面
for(i=1;i<=n;i++)
{
dis[i]=G[u][i];
pre[i]=u;//记录父节点
}
dis[u]=0;
use[u]=1;
for(i=1;i<n;i++)
{
int mini=inf;
int tep=-1;
for(j=1;j<=n;j++)
{
if(!use[j]&&dis[j]<mini)
{
mini=dis[j];
tep=j;
}
}
if(tep==-1)break;
use[tep]=1;
vis[tep][pre[tep]]=vis[pre[tep]][tep]=1;
ans+=mini;
for(j=1;j<=n;j++)
{
if(!use[j]&&dis[j]>G[tep][j])
{
dis[j]=G[tep][j];
pre[j]=tep;
}
if(j!=tep)
maxd[tep][j]=maxd[j][tep]=max(mini,maxd[pre[tep]][j]);//更新
}
}
return ans;
}
int main()
{
int T,m,n,i,j;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
G[i][j]=inf;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(G[a][b]>c)
G[a][b]=G[b][a]=c;
}
int ans=dij(1,n);
int cnt=inf;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(G[i][j]<inf&&vis[i][j]==0)
{
cnt=min(cnt,ans+G[i][j]-maxd[i][j]);
}
}
}
if(ans==cnt)
printf("Not Unique!\n");
else
printf("%d\n",ans);
}
return 0;
}

次小生成树(poj1679)的更多相关文章

  1. 次小生成树(POJ1679/CDOJ1959)

    POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...

  2. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  3. POJ1679(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36692   Accepted: 13368 ...

  4. POJ1679(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24201   Accepted: 8596 D ...

  5. POJ1679 The Unique MST【次小生成树】

    题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...

  6. POJ1679 The Unique MST 【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20421   Accepted: 7183 D ...

  7. poj1679次小生成树入门题

    次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...

  8. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  9. POJ-1679 The Unique MST,次小生成树模板题

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K       Description Given a connected undirec ...

随机推荐

  1. 执行大数据量SQL文件

    sqlserver2008中需要执行大文件的脚本,查询分析器中打不开,需要用到sql命令,开始使用osql命令 使用sqlcmd可以执行:在DOS中,调用sqlcmd命令,并使用对应选项    sql ...

  2. centos 部署 SparkR

    ---恢复内容开始--- 环境配置—— 操作系统:CentOS 6.5 JDK版本:1.7.0_67 Hadoop集群版本:CDH 5.3.0 安装过程—— 1.(1)安装R yum install ...

  3. 【转】记一次ASP.NET MVC性能优化(实际项目中)

    前言 在开发中为了紧赶项目进度而未去关注性能的问题,在项目逐渐稳定下来后发现性能令人感到有点忧伤,于是开始去关注这方面,本篇为记录在开发中遇到的问题并解决,不喜勿喷.注意:以下问题都是在移动端上出现, ...

  4. IOS URL scheme

    常用URL scheme查询 http://handleopenurl.com/scheme QQ: mqq://新浪微博: weibo:// (sinaweibo://)腾讯微博: tencentw ...

  5. 使用Java程序片段动态生成表格

    <% String[] bookName = { "javaweb典型模块大全", "java从入门到放弃", "C语言程序设计" } ...

  6. asp.net session的使用与过期实例代码

    Session的使用 <head runat="server">    <title></title>    <script src=&q ...

  7. 最新版ChemDraw 15.1 免费获取下载

    ChemDraw 15.1 Pro是最新版的ChemOffice套件的个人生产力工具,它可以帮助科学家有效地捕捉和分享工作内容,通过可视化功能对结果获得更深入的了解.现在为大家带来好消息,ChemOf ...

  8. linux系统中RPM包的通用命名规则

    http://blog.csdn.net/kexiuyi/article/details/53292358

  9. js继承摘要

    对象的构造函数是指向创建对象的类的原型对象的构造函数. 类是一个Function, Function都有原型对象,原型对象的构造函数指向类的声明. function Person(){ } Perso ...

  10. day11<Java开发工具&常见对象>

    Java开发工具(常见开发工具介绍) Java开发工具(Eclipse中HelloWorld案例以及汉化) Java开发工具(Eclipse的视窗和视图概述) Java开发工具(Eclipse工作空间 ...