hdu5542 The Battle of Chibi【树状数组】【离散化】
The Battle of Chibi
Time Limit: 6000/4000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2899 Accepted Submission(s): 1043
So there is only one way left for Yu Zhou, send someone to fake surrender Cao Cao. Gai Huang was selected for this important mission. However, Cao Cao was not easy to believe others, so Gai Huang must leak some important information to Cao Cao before surrendering.
Yu Zhou discussed with Gai Huang and worked out N information to be leaked, in happening order. Each of the information was estimated to has ai value in Cao Cao's opinion.
Actually, if you leak information with strict increasing value could accelerate making Cao Cao believe you. So Gai Huang decided to leak exact M information with strict increasing value in happening order. In other words, Gai Huang will not change the order of the N information and just select M of them. Find out how many ways Gai Huang could do this.
Each test case begins with two numbers N(1≤N≤103) and M(1≤M≤N), indicating the number of information and number of information Gai Huang will select. Then N numbers in a line, the ith number ai(1≤ai≤109) indicates the value in Cao Cao's opinion of the ith information in happening order.
The result is too large, and you need to output the result mod by 1000000007(109+7).
3 2
1 2 3
3 2
3 2 1
Case #2: 0
In the first cases, Gai Huang need to leak 2 information out of 3. He could leak any 2 information as all the information value are in increasing order.
In the second cases, Gai Huang has no choice as selecting any 2 information is not in increasing order.
题意:
问一个序列之中有多少个长度为M的严格递增子序列。
思路:
我们用dp[i][j]表示前j个数中,以Aj为结尾的长度为i的严格递增子序列的个数。
那么对于dp[i][j],我们只需要枚举所有小于j的k,并且Ak < Aj,将所有的dp[i-1][k]求和,可以得到dp[i][j]
很容易想到O(n^3)的算法,但是显然会超时,所以我们需要进行一些优化。
当我们枚举内层循环j,k时,外层循环i就可以被当成是定值。当j增加1,k的取值只是多了k = j这个新的决策。
因此我们用树状数组维护一个前缀和,表示1~j区间,长度为i-1时的方案数。
由于add时第一个参数放的是a[j],也就是说现在直接用了他的权值作为了下标,所以只要下标比他小的,权值一定比他小,也就不需要进行比较了。直接去前缀和就可以了。【日常感谢家庭教师】
最开始离散化用的set和map TLE了
后来改用了另一个数组,先排序然后lower_bound,并且直接把原数组的值改掉
#include <iostream>
#include <set>
#include <cmath>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
typedef long long LL;
#define inf 0x7f7f7f7f int t, n, m, cnt;
const int maxn = ;
const LL mod = 1e9 + ;
int a[maxn], b[maxn];
LL sum[maxn], dp[maxn][maxn];
map<LL, int>discrete;
set<LL>sss;
set<LL>::iterator iter; void add(int pos, LL x)
{
while(pos <= n + ){
sum[pos] = (sum[pos] + x) % mod;
pos += (pos & -pos);
}
} LL ask(int pos)
{
LL ans = ;
while(pos){
ans = (ans + sum[pos]) % mod;;
pos -= (pos & -pos);
}
return ans;
} void init()
{
discrete.clear();
sss.clear();
//memset(dp, 0, sizeof(dp));
for(int i = ; i <= m; i++){
for(int j = ; j <= n; j++){
dp[i][j] = ;
}
}
cnt = ;
} int main()
{
scanf("%d", &t);
for(int cas = ; cas <= t; cas++){
init();
scanf("%d%d", &n, &m);
a[] = b[] = -inf;
dp[][] = ;
//sss.insert(a[0]);
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
b[i] = a[i];
//sss.insert(a[i]);
}
sort(b, b + n + );
for(int i = ; i <= n; i++){
a[i] = lower_bound(b, b + + n, a[i]) - b + ;
//cout<<a[i]<<endl;
}
/*for(iter = sss.begin(); iter != sss.end(); iter++){
discrete[*iter] = ++cnt;
}*/
//cout<<a[0]<<endl;
for(int i = ; i <= m; i++){
//memset(sum, 0, sizeof(sum));
for(int j = ; j <= n + ; j++){
sum[j] = ;
}
add(a[], dp[i - ][]); for(int j = ; j <= n; j++){
dp[i][j] = ask(a[j] - );
//if(discrete[a[j]] < discrete[a[j + 1]])
add(a[j], dp[i - ][j]);
}
} int ans = ;
for(int i = ; i <= n; i++){
ans = (ans + dp[m][i]) % mod;
}
printf("Case #%d: %d\n", cas, ans);
}
}
hdu5542 The Battle of Chibi【树状数组】【离散化】的更多相关文章
- 南阳ccpc C题 The Battle of Chibi && hdu5542 The Battle of Chibi (树状数组优化+dp)
题意: 给你一个长度为n的数组,你需要从中找一个长度为m的严格上升子序列 问你最多能找到多少个 题解: 我们先对原序列从小到大排序,排序之后的序列就是一个上升序列 这里如果两个数相等的话,那么因为题目 ...
- 南阳ccpc C题 The Battle of Chibi 树状数组+dp
题目: Cao Cao made up a big army and was going to invade the whole South China. Yu Zhou was worried ab ...
- hdu4605 树状数组+离散化+dfs
Magic Ball Game Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- BZOJ_5055_膜法师_树状数组+离散化
BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...
- POJ 2299 【树状数组 离散化】
题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...
- HDU 2227 Find the nondecreasing subsequences (DP+树状数组+离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 Find the nondecreasing subsequences ...
- BZOJ-1227 虔诚的墓主人 树状数组+离散化+组合数学
1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MB Submit: 914 Solved: 431 [Submit][Statu ...
- POJ 2299 树状数组+离散化求逆序对
给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...
- [HDOJ4325]Flowers(树状数组 离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4325 关于离散化的简介:http://blog.csdn.net/gokou_ruri/article ...
- HDU4456-Crowd(坐标旋转+二位树状数组+离散化)
转自:http://blog.csdn.net/sdj222555/article/details/10828607 大意就是给出一个矩阵 初始每个位置上的值都为0 然后有两种操作 一种是更改某个位置 ...
随机推荐
- linux -- chown修改文件拥有者和所在组
chown将指定文件的拥有者改为指定的用户或组,用户可以是用户名或者用户ID:组可以是组名或者组ID:文件是以空格分开的要改变权限的文件列表,支持通配符.系统管理员经常使用chown命令,在将文件拷贝 ...
- 防止 apk反编译 jocky-- java混淆代码 (转至:http://my.oschina.net/f839903061/blog/72554)
1.下载jocky,解压后把整个文件夹复制到Eclipse的plugin目录.2.重启Eclipse,在项目上点右键,如果出现jocky菜单,则安装成功. 3.在项目上点右键,选菜单jocky-> ...
- 详解JQuery Ajax 在asp.net中使用总结
自从有了JQuery,Ajax的使用变的越来越方便了,但是使用中还是会或多或少的出现一些让人短时间内痛苦的问题.本文暂时总结一些在使用JQuery Ajax中应该注意的问题,如有不恰当或者不完善的地方 ...
- 查询_修改SQL Server 2005中数据库文件存放路径
1.查看当前的存放路径: select database_id,name,physical_name AS CurrentLocation,state_desc,size from sys.maste ...
- 基于nodejs的开源博客
https://github.com/hexojs/hexo https://hexo.io/zh-cn/docs/ markdown编辑器 http://pandao.github.io/edito ...
- NHibernate初学三之条件查询(Criteria Queries)与AspNetPager分页实例
NHibernate除了SQL与HQL两种查询操作外,还有一种就是条件查询Criteria,本文将从网上整理一些Criteria的理论及小实例,最后通过一个结合AspNetPager分页来加深理解,必 ...
- EF--CodeFirst
1,增加EntityFramework的引用 2,创建实体类 public class Invoice { public Invoice() { LineItems = new List<Lin ...
- 制作Windows U盘镜像
目的:制作windows server 2008 U盘镜像 需要的共具: 1.一个格式为FAT并且至少4G的U盘, 2.UltraISO软件, 3.一个windows server 2008 ISO文 ...
- JavaScript作用域原理——预编译
JavaScript是一种脚本语言, 它的执行过程, 是一种翻译执行的过程.并且JavaScript是有预编译过程的,在执行每一段脚本代码之前, 都会首先处理var关键字和function定义式(函数 ...
- 将Eclipse项目导入到Android studio 中 很多点9图出现问题解决方法
在build.gradle里添加以下两句: aaptOptions.cruncherEnabled = false aaptOptions.useNewCruncher = false