本人最近在写一篇关于神经网络同步的文章,其一部分模型为:

x_i^{\Delta}(t)= -a_i*x_i(t)+ b_i* f(x_i(t))+ \sum\limits_{j \in\{i-1, i+1\}}c_{ij}f(x_j(t-\tau_{ij})), t\in\mathbb{R}    (1.1)

y_i^{\Delta}(t)= -a_i*y_i(t)+ b_i* f(y_i(t))+ \sum\limits_{j \in\{i-1, i+1\}}c_{ij}f(y_j(t-\tau_{ij})), t\in\mathbb{R}    (1.2)

下面利用python求(1.1)-(1.2)的数值解并作出图形:

# Numerical simulation for 3-rd paper
# Author: Qiang Xiao
# Time: 2015-06-22 import matplotlib.pyplot as plt
import numpy as np a= 0.5
b= -0.5
c= 0.5
tau= 1
k= 2
delta= 0.1
T= 200
row= 6
col= int(T/delta)
N= 6 x= np.zeros((row, col))
dx= np.zeros((row, col))
y= np.zeros((row, col))
dy= np.zeros((row, col)) x0= [5,2,1,0,1,4]
y0= [-5,2,-3,-2,0,-3]
for i in range(N):
x[i,0:int(tau/delta)+ 1]= x0[i]
y[i,0:int(tau/delta)+ 1]= y0[i] print np.e def f(t):
return np.cos(t) def j(i):
if i== 0:
  return 1, 5
elif i== 5:
  return 4, 0
else:
   return i-1, i+1 for time in range(int(tau/delta),int(T/delta)-1):
for i in range(6):
  dx[i, time]= -a* x[i, time]+ b*f(x[i, time])+ c*f(x[int(j(i)[0]), time- 10])+ c*f(x[int(j(i)[1]), time- 10])
  dy[i, time]= -a* y[i, time]+ b*f(y[i, time])+ c*f(y[int(j(i)[0]), time- 10])+ c*f(y[int(j(i)[1]), time- 10])+ k*(x[i, time]- y[i, time])
x[i, time+1]= x[i, time]+ delta*dx[i, time]
y[i, time+1]= y[i, time]+ delta*dy[i, time] tt= np.arange(tau,T,delta)
print len(tt) plt.plot(tt,x[0,10:int(T/delta)],'c')
plt.plot(tt,y[0,10:int(T/delta)],'c.')
plt.plot(tt,x[1,10:int(T/delta)],'r.')
plt.plot(tt,y[1,10:int(T/delta)],'r')
plt.plot(tt,x[2,10:int(T/delta)],'b')
plt.plot(tt,y[2,10:int(T/delta)],'b.')
plt.plot(tt,x[3,10:int(T/delta)],'k')
plt.plot(tt,y[3,10:int(T/delta)],'k.')
plt.plot(tt,x[4,10:int(T/delta)],'m')
plt.plot(tt,y[4,10:int(T/delta)],'m.')
plt.plot(tt,x[5,10:int(T/delta)],'y')
plt.plot(tt,y[5,10:int(T/delta)],'y.') plt.xlabel('Time t')
plt.ylabel('xi(t) and yi(t)')
plt.legend(('x1','y1','x2','y2','x3','y3','x4','y4','x5','y5','x6','y6'))
plt.show()

由上图可以看出,网络单元x_i(t) 与 y_i(t) 分别达成了同步。

欢迎交流!

python求微分方程组的数值解曲线01的更多相关文章

  1. Python小白的数学建模课-05.0-1规划

    0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将 ...

  2. 使用python求字符串或文件的MD5

    使用python求字符串或文件的MD5 五月 21st, 2008 #以下可在python3000运行. #字符串md5,用你的字符串代替'字符串'中的内容. import hashlib md5=h ...

  3. Python 求点到直线的垂足

    Python 求点到直线的垂足 在已知一个点,和一条已知两个点的直线的情况下 运算公式参考链接:https://www.cnblogs.com/mazhenyu/p/3508735.html def ...

  4. python求100以内素数

    python求100以内素数之和 from math import sqrt # 使用isPrime函数 def isPrime(n): if n <= 1: return False for ...

  5. MATLAB求微分

    求微分 diff(函数) , 求的一阶导数;diff(函数, n) , 求的n阶导数(n是具体整数);diff(函数,变量名), 求对的偏导数;diff(函数, 变量名,n) ,求对的n阶偏导数; & ...

  6. Python 求两个文本文件以行为单位的交集 并集 差集

    Python 求两个文本文件以行为单位的交集 并集 差集,来代码: s1 = set(open('a.txt','r').readlines()) s2 = set(open('b.txt','r') ...

  7. python求极值点(波峰波谷)

    python求极值点主要用到scipy库. 1. 首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfit import pandas as pd import matplotli ...

  8. Python求一个数字列表的元素总和

    Python求一个数字列表的元素总和.练手: 第一种方法,直接sum(list): 1 lst = list(range(1,11)) #创建一个1-10的数字列表 2 total = 0 #初始化总 ...

  9. python求线性回归斜率

    一. 先说我对这个题目的理解 直线的x,y方程是这样的:y = kx+b, k就是斜率. 求线性回归斜率, 就是说 有这么一组(x, y)的对应值——样本.如果有四组,就说样本量是4.根据这些样本,做 ...

随机推荐

  1. 我用过的linux命令--安装JDK

    首先,我的测试环境是CentOS的linux虚拟机,如果想安装JDK,首先要有一个JDK.利用的软件就是WinSCP,把JDK从windows中传送到Linux中去. 1. JDK从Windows到L ...

  2. HDU2602-Bone Collector

    描述: Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man l ...

  3. oracle 11g 物理内存 - 此先决条件将测试系统物理内存总量是否至少为 922MB (944128.0KB)

  4. 弹出窗口内嵌iframe 框口自适应

    说一下,弹出窗口还有内嵌一个iframe 这种模式应该是不科学的,但是公司项目里面就偏偏用到了,它这高低还不能只适应,所以我痛苦的日子来了 分析一下: 首先window.showDialog 方法的时 ...

  5. hdu 4619 Warm up 2 二分图匹配

    题目链接 给两种长方形, 水平的和垂直的, 大小都为1*2, n个水平的, m个垂直的, 给出它们的坐标. 水平的和垂直的可以相互覆盖, 但是同种类型的没有覆盖. 去掉一些长方形, 使得剩下的全部都没 ...

  6. strlen源码剖析

      学习高效编程的有效途径之一就是阅读高手写的源代码,CRT(C/C++ Runtime Library)作为底层的函数库,实现必然高效.恰好手中就有glibc和VC的CRT源代码,于是挑了一个相对简 ...

  7. linux 中多线程使用

    /* * 对于线程之间的操作: * 一个进程中会有多个线程,各个线程之间的或向切换会付出很小的代价相比于进程之间的切换 * 为什么要引入多线程: * 1.与进程相比,他是一种非常节俭的多任务的操作方式 ...

  8. C#--遍历目录实例

    鉴于前面几篇博客都说了,这边就啥都不说了.直接就開始贴代码了. 1.控件解释: FolderBrowserDialog控件一个----用来显示"浏览目录"对话框 TextBox控件 ...

  9. 利用CSS、JavaScript及Ajax实现图片预加载的三大方法(转)

    预加载图片是提高用户体验的一个很好方法.图片预先加载到浏览器中,访问者便可顺利地在你的网站上冲浪,并享受到极快的加载速度.这对图片画廊及图片占据很大比例的网站来说十分有利,它保证了图片快速.无缝地发布 ...

  10. CSS的float与clear

    首先要知道,div是块级元素,在页面中独占一行,自上而下排列,也就是传说中的流.如下图: 可以看出,即使div1的宽度很小,页面中一行可以容下div1和div2,div2也不会排在div1后边,因为d ...