stm32之Systick(系统时钟)
Systick的两大作用:
1、可以产生精确延时;
2、可以提供给操作系统一个单独的心跳(时钟)节拍;
通常实现Delay(N)函数的方法为:
for(i=0;i<x;i++)
;
对于STM32系统微处理器来说,执行一条指令只有几十ns(纳秒),进入for循环,要实现N毫秒的x值非常大;而由于系统频率的宽广,很难计算出延时N毫秒的精确值;针对STM32微处理器,需要重新设计一个新的方法去实现该功能,以实现在程序中使用Delay(N);
cortex的内核中包含一个SysTick时钟,SysTick为一个24位递减计数器;SysTick设定初值并使能后,每经过1个系统时钟周期,计数值就减1;计数到0,SysTick计数器自动装载初值并继续计数,同时内部的COUNTFLAG标志会置位;触发中断(前提是中断使能);
如果外部晶振(即外接的晶振)位8Mhz,经过内部9分频;系统时钟则为72Mhz(cpu的时钟);SysTick的最高频率为9Mhz(cpu时钟的8分频);在这个条件下;如果设置SysTick值为9000;而SysTick是9Mhz;则能产生1ms的时间基;即SysTick产生1ms的中断;
SysTick相关的寄存器:
CTRL: SysTick控制和状态寄存器;
LOAD: SysTick重装载值寄存器;
VAL: SysTick当前寄存器;(重新写入的时候;会把状态寄存器的FLAG清零)
CALIB: SysTick校准值寄存器;
SysTick设置步骤:(使用ST的函数库使用Systick的方法)
1、调用SysTick_CounterCmd()失能SysTick计数器;
2、调用SysTick_ITConfig()失能SysTick中断;
3、调用SysTick_CLKSourceConfig()设置SysTick时钟源;
4、调用SysTick_SetReload() 设置SysTick重装载值;
5、调用SysTick_ITConfig() 使能SysTick中断;
6、调用SysTick_CounterCmd() 开启SysTick计数器;
/*Include---------------------------*/
#include"stm32f10x_lib.h" //包含所有的头文件
#include<stdio.h> //----------------函数声明--------------------
void Delay_MS(u16 dly);
void RCC_Configuration(void);
void GPIO_Configuration(void);
void USART3_Configuration(void); u8 tab[] = "hello welcome to class !"; void SYSTICK_Configuration(void)
{
SysTick_CounterCmd(SysTick_Counter_Disable);
SysTick_ITConfig(DISABLE);
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);
SysTick_SetReload(*);
SysTick_CounterCmd(SysTick_Counter_Enable); //*************打开systick时钟,但是由于systick时钟是默认开启的; } /*******************************************************************************
* Function Name : main
* Description : Main program.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
int main(void)
{
u8 min, sec;
#ifdef DEBUG
debug();
#endif
//------------初始化------------
RCC_Configuration();
GPIO_Configuration();
USART3_Configuration();
SYSTICK_Configuration(); // id_num[0] = *((u8*)(0x1FFFF7E9)); //stm32芯片id的放置地址,96位id;12字节
printf("hello world\n");
//------------将数据上传给上位机-----------
min = ;
sec = ; while()
{
FlagStatus Status;
Status = SysTick_GetFlagStatus(SysTick_FLAG_COUNT);
if(Status == RESET)
{
;
}
else
{
sec++;
if(sec == )
{
sec=;
min++;
}
printf("\t\t%d:%d", min, sec);
}
} } /*******************************************************************************
* Function Name : Delay_Ms
* Description : delay 1 ms.
* Input : dly (ms)
* Output : None
* Return : None
*******************************************************************************/
void Delay_MS(u16 dly)
{
u16 i,j;
for(i=;i<dly;i++)
for(j=;j>;j--);
} /*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
//----------使用外部RC晶振-----------
RCC_DeInit(); //初始化为缺省值
RCC_HSEConfig(RCC_HSE_ON); //使能外部的高速时钟
while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET); //等待外部高速时钟使能就绪 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer
FLASH_SetLatency(FLASH_Latency_2); //Flash 2 wait state RCC_HCLKConfig(RCC_SYSCLK_Div1); //HCLK = SYSCLK
RCC_PCLK2Config(RCC_HCLK_Div1); //PCLK2 = HCLK
RCC_PCLK1Config(RCC_HCLK_Div2); //PCLK1 = HCLK/2
RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9); //PLLCLK = 8MHZ * 9 =72MHZ
RCC_PLLCmd(ENABLE); //Enable PLLCLK while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLLCLK is ready
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock
while(RCC_GetSYSCLKSource()!=0x08); //Wait till PLL is used as system clock source //---------打开相应外设时钟--------------------
RCC_APB2PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE); //使能APB2外设的GPIOC的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE); //复用功能时钟开启
} /*******************************************************************************
* Function Name : GPIO_Configuration
* Description : 初始化GPIO外设
* Input : None
* Output : None
* Return : None
*******************************************************************************/
//由电路图可知;配置PC10,PC11引脚
void GPIO_Configuration(void)
{
//CLK:PB5 CLR:PE11 DATA:PE10
GPIO_InitTypeDef GPIO_InitStructure; //声明一个结构体变量
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //选择PB.1-
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //管脚频率为50MHZ
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //输出模式为 "复用推挽输出"
GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化GPIOB寄存器 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 |GPIO_Pin_11 ; //选择PE.10 PE.11
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //管脚频率为50MHZ
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //输出模式为 "浮空输入"
GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化GPIOE寄存器 //开启时钟 必须在RCC_Configuration中设置 //端口重映射:PC10/PC11
GPIO_PinRemapConfig(GPIO_PartialRemap_USART3, ENABLE);
} void USART3_Configuration(void)
{
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART3, &USART_InitStructure); USART_Cmd(USART3, ENABLE); //开启使能
} /***********************************************************
name: fputc *
Description:重定向这个c库printf函数,文件流--->串口USART *
*
************************************************************/
int fputc(int ch,FILE *f)
{
//ch发送给USART1
USART_SendData(USART3, ch);
//等待发送完毕
while(USART_GetFlagStatus(USART3, USART_FLAG_TC)==RESET)
;
return ch;
}
stm32之Systick(系统时钟)的更多相关文章
- STM32学习笔记(六) SysTick系统时钟滴答实验(stm32中断入门)
系统时钟滴答实验很不难,我就在面简单说下,但其中涉及到了STM32最复杂也是以后用途最广的外设-NVIC,如果说RCC是实时性所必须考虑的部分,那么NVIC就是stm32功能性实现的基础,NVIC的难 ...
- 基于Systick系统时钟延时的LED闪烁灯
1.回顾我们的51 单片机编程,当我们需要做系统延迟的时候,最常采用的一种方式就是使用for 循环的空语句等待来实现. 当然,在STM32 里面也可以这么实现.但是在STM32 的Cortex 内核里 ...
- STM32 晶振 系统时钟8MHZ和72Mhz的原因
首先问题描述: 1.自己画的板子和淘宝买的最小系统板 系统时钟不一致,自己画的是8Mhz,HSE失败:最小系统板72Mhz 2.最小系统板在程序1运行仿真的时候,查看peripherals->P ...
- STM32学习笔记:系统时钟和SysTick定时器
原文:http://blog.sina.com.cn/s/blog_49cb42490100s60d.html 1. STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI.HS ...
- STM32(4)——系统时钟和SysTick
1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL HSI是高速内部时钟,RC振荡器,频率为8MHz: HSE是高速外部时钟,可接石英/陶瓷谐振器 ...
- stm32之Cortex系统定时器(SysTick)
转载自:http://www.21ic.com/app/mcu/201811/781135.htm SysTick时钟,俗称“嘀嗒定时器”,它能按设定的时间产生一次中断.控制工程代码中随处可见形如 ...
- STM32—SysTick系统定时器
SysTick是STM32中的系统定时器,利用SysTick可以实现精确的延时. SysTick-系统定时器 属于 CM3 内核中的一个外设,内嵌在 NVIC 中.系统定时器是一个 24bit 的向下 ...
- STM32系统时钟
一.时钟树 STM32有4个时钟源: 1)HSE(高速外部时钟源) 外部晶振作为时钟源,范围为4~16MHz,常取为8MHz 2)HSI(高速内部时钟源) 由内部RC振荡器产生,频率为8MHz,但不稳 ...
- STM32系统时钟为什么没有定义呢
对于使用3.5版本库开发的STM32学习者 有时候不清楚为什么没有时钟定义 那么我们就简单的讲解下吧: 1,函数从启动文件开始运行(汇编文件) 2,若是hd.s 请看151行LDR R0, = ...
随机推荐
- java读取配置文件的几种方法
java读取配置文件的几种方法 原文地址:http://hbcui1984.iteye.com/blog/56496 在现实工作中,我们常常需要保存一些系统配置信息,大家一般都会选择配 ...
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- 我用过的Linux命令--虚拟机和宿主机的网络连接方式
VMWare提供了三种工作模式,它们是bridged(bridged模式:对应网卡vment0).NAT(网络地址转换模式:对应网卡vment8)和host-only(主机模式:对应网卡vment1) ...
- codeforces 508D . Tanya and Password 欧拉通路
题目链接 给你n个长度为3的子串, 这些子串是由一个长度为n+2的串分割得来的, 求原串, 如果给出的不合法, 输出-1. 一个欧拉通路的题, 将子串的前两个字符和后两个字符看成一个点, 比如acb, ...
- PhoneGap笔记-01 基本使用
1. 环境配置 1.1 常用框架 jQuery Backbone.js dojo bootstrap kendo UI Sencha jQuery Mobile PhoneJS AngularJS I ...
- Java web 开发环境配置。
一.配置 win8 64位 环境java 开发环境 1. 下载JDK,地址 http://www.oracle.com/technetwork/java/javase/downloads/index ...
- ThinkPHP 3.1.2 模板中的基本语法<1>
# # ThinkPHP 3.1.2 模板中的基本语法 一.传统的方式,导入CSS和JS文件 1.css link js scr <link rel='stylesheet' type='tex ...
- HDOJ 1423 Greatest Common Increasing Subsequence(dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1423 思路分析:[问题定义]给定两个序列A[0, 1,..., m]和B[0, 1, ..., n], ...
- mahout贝叶斯算法开发思路(拓展篇)2
如果想直接下面算法调用包,可以直接在mahout贝叶斯算法拓展下载,该算法调用的方式如下: $HADOOP_HOME/bin hadoop jar mahout.jar mahout.fansy.ba ...
- 令人作呕的OpenSSL
在OpenSSL心脏出血之后,我相信非常多人都出了血,而且流了泪...网上瞬间出现了大量吐嘈OpenSSL的文章或段子,仿佛内心的窝火一瞬间被释放了出来,跟着这场疯闹,我也吐一下嘈,以雪这些年被Ope ...