Harry Potter and the Final Battle

Description

The final battle is coming. Now Harry Potter is located at city 1, and Voldemort is located at city n. To make the world peace as soon as possible, Of course, Harry Potter will choose the shortest road between city 1 and city n. But unfortunately, Voldemort is so powerful that he can choose to destroy any one of the existing roads as he wish, but he can only destroy one. Now given the roads between cities, you are to give the shortest time that Harry Potter can reach city n and begin the battle in the worst case.

 

Input

First line, case number t (t<=20).

Then for each case: an integer n (2<=n<=1000) means the number of city in the magical world, the cities are numbered from 1 to n. Then an integer m means the roads in the magical world, m (0< m <=50000). Following m lines, each line with three integer u, v, w (u != v,1 <=u, v<=n, 1<=w <1000), separated by a single space. It means there is a bidirectional road between u and v with the cost of time w. There may be multiple roads between two cities.

 

Output

Each case per line: the shortest time to reach city n in the worst case. If it is impossible to reach city n in the worst case, output “-1”.

 

Sample Input

3
4
4
1 2 5
2 4 10
1 3 3
3 4 8
3
2
1 2 5
2 3 10
2
2
1 2 1
1 2 2
 

Sample Output

15
-1
2
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; const int N=1010;
const int M=100010;
const int INF=0xffffff; struct Edge
{
int u;
int to;
int w;
int flag;
int next;
} e[M]; int head[N];
int dist[N];
int path[N];
int inq[N];
int n,m,cnt,flag; void AddEdge(int u,int v,int w)
{
e[cnt].u=u;
e[cnt].to=v;
e[cnt].w=w;
e[cnt].flag=1;
e[cnt].next=head[u];
head[u]=cnt++;
} int SPFA(int s)
{
queue<int>Q;
for(int i=1; i<=n; i++)
{
dist[i]=INF;
inq[i]=0;
}
dist[s]=0;
inq[s]=1;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
inq[u]=0;
for(int j=head[u]; j!=-1; j=e[j].next)
{
int x=e[j].to;
if(e[j].flag&&dist[x]>dist[u]+e[j].w)
{
dist[x]=dist[u]+e[j].w;
if(!flag)
path[x]=j;
if(!inq[x])
{
Q.push(x);
inq[x]=1;
}
}
}
}
return dist[n];
} int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--)
{
cnt=flag=0;
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
AddEdge(u,v,w);
AddEdge(v,u,w);
}
memset(path,-1,sizeof(path));
SPFA(1);
flag=1;
int i=n,j=-1;
int res=-1;
while(path[i]!=-1)
{
j=path[i];
e[j].flag=e[j+1].flag=0;
int tmp=SPFA(1);
e[j].flag=e[j+1].flag=1;
if(tmp>res)
res=tmp;
i=e[j].u;
}
if(res<INF)
printf("%d\n",res);
else
puts("-1");
}
}

枚举最短路径+SPFA的更多相关文章

  1. [最短路径SPFA] POJ 1847 Tram

    Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tra ...

  2. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  3. 最短路径 SPFA P3371 【模板】单源最短路径(弱化版)

    P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复 ...

  4. 最短路径——SPFA算法

    一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...

  5. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  6. luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法

    P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...

  7. 最短路径----SPFA算法

    求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们 ...

  8. LD1-B(最短路径-SPFA)

    题目链接 /* *题目大意: *给定v个点的重量,并给定e条边,每条边具有一个权值; *在e条边中选v-1条边使这v个点成为一棵树; *定义这棵树的代价为(每棵子树节点重量和其子树根到父节点的边的权值 ...

  9. 【SPFA与Dijkstra的对比】CDOJ 1961 咸鱼睡觉觉【差分约束-负权最短路径SPFA】

    差分约束系统,求最小值,跑最长路. 转自:https://www.cnblogs.com/ehanla/p/9134012.html 题解:设sum[x]为前x个咕咕中至少需要赶走的咕咕数,则sum[ ...

随机推荐

  1. new Date()的参数

    前两天发现手机页面的倒计时在Android上正常显示,在iPhone却不能显示. 后来又发现在ff和ie里也不显示.(以前只在chrome里看过,显示正常). 后来同事改了new Date()里字符串 ...

  2. 关于Python中的yield(转载)

    您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield ...

  3. IPv6地址的ping、telnet等操作

    最近在研究https协议是如何传输数据的,用wireshark抓包分析,发现客户机和google网站在传输数据时使用了IPv6地址,于是相对ipv6地址测试下基本的功能. ping功能,直接使用pin ...

  4. arm中的ldr指令

    label .equ 0x53000000 ldr r0, label : 将0x53000000地址处的值放入r0中 ldr r0, =label : 将0x53000000付值给r0.

  5. Protel99se教程九:protel99se中PCB设计的高级应用

    在上一节我们PCB资源网的protel99se教程当中,我们给大家讲解了在protel99se进行原理图设计中的一些高级应用技巧,在这一节protel99se教程当中,我们将给大家讲解的是,在prot ...

  6. [置顶] LED办公楼宇照明节能方案及城市夜景照明节能方案

    LED照明办公楼宇节能方案 .通用标准灯头,可直接替换现有卤素灯.白炽灯.荧光灯.

  7. ThinkPHP 3.1.2 视图-1

    一.模板的使用 (重点) a.规则 模板文件夹下[TPL]/[分组文件夹/][模板主题文件夹/]和模块名同名的文件夹[Index]/和方法名同名的文件 [index].html(.tpl) 更换模板文 ...

  8. HDU 1847 Good Luck in CET-4 Everybody!

    题解:巴什博弈,2^k+1=3N或2^k2=3N,所以3N为P-position,3N+r为N-position. #include <cstdio> int main(){ int n; ...

  9. 网络收发之cycleBuf

    #pragma once #include <iostream> #include <string> class cyclebuffer { protected: volati ...

  10. Sublime 操作技巧

    吐槽一下:刚下载的subime不是等宽字体,空格.表达.字母i什么的都很窄,看着不方便: 根据网上说的换成等宽字体,试了好多种字体,字体变了.但宽度没变. 然后有装了soda,和相应的color-th ...