Harry Potter and the Final Battle

Description

The final battle is coming. Now Harry Potter is located at city 1, and Voldemort is located at city n. To make the world peace as soon as possible, Of course, Harry Potter will choose the shortest road between city 1 and city n. But unfortunately, Voldemort is so powerful that he can choose to destroy any one of the existing roads as he wish, but he can only destroy one. Now given the roads between cities, you are to give the shortest time that Harry Potter can reach city n and begin the battle in the worst case.

 

Input

First line, case number t (t<=20).

Then for each case: an integer n (2<=n<=1000) means the number of city in the magical world, the cities are numbered from 1 to n. Then an integer m means the roads in the magical world, m (0< m <=50000). Following m lines, each line with three integer u, v, w (u != v,1 <=u, v<=n, 1<=w <1000), separated by a single space. It means there is a bidirectional road between u and v with the cost of time w. There may be multiple roads between two cities.

 

Output

Each case per line: the shortest time to reach city n in the worst case. If it is impossible to reach city n in the worst case, output “-1”.

 

Sample Input

3
4
4
1 2 5
2 4 10
1 3 3
3 4 8
3
2
1 2 5
2 3 10
2
2
1 2 1
1 2 2
 

Sample Output

15
-1
2
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; const int N=1010;
const int M=100010;
const int INF=0xffffff; struct Edge
{
int u;
int to;
int w;
int flag;
int next;
} e[M]; int head[N];
int dist[N];
int path[N];
int inq[N];
int n,m,cnt,flag; void AddEdge(int u,int v,int w)
{
e[cnt].u=u;
e[cnt].to=v;
e[cnt].w=w;
e[cnt].flag=1;
e[cnt].next=head[u];
head[u]=cnt++;
} int SPFA(int s)
{
queue<int>Q;
for(int i=1; i<=n; i++)
{
dist[i]=INF;
inq[i]=0;
}
dist[s]=0;
inq[s]=1;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
inq[u]=0;
for(int j=head[u]; j!=-1; j=e[j].next)
{
int x=e[j].to;
if(e[j].flag&&dist[x]>dist[u]+e[j].w)
{
dist[x]=dist[u]+e[j].w;
if(!flag)
path[x]=j;
if(!inq[x])
{
Q.push(x);
inq[x]=1;
}
}
}
}
return dist[n];
} int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--)
{
cnt=flag=0;
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
AddEdge(u,v,w);
AddEdge(v,u,w);
}
memset(path,-1,sizeof(path));
SPFA(1);
flag=1;
int i=n,j=-1;
int res=-1;
while(path[i]!=-1)
{
j=path[i];
e[j].flag=e[j+1].flag=0;
int tmp=SPFA(1);
e[j].flag=e[j+1].flag=1;
if(tmp>res)
res=tmp;
i=e[j].u;
}
if(res<INF)
printf("%d\n",res);
else
puts("-1");
}
}

枚举最短路径+SPFA的更多相关文章

  1. [最短路径SPFA] POJ 1847 Tram

    Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tra ...

  2. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  3. 最短路径 SPFA P3371 【模板】单源最短路径(弱化版)

    P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复 ...

  4. 最短路径——SPFA算法

    一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...

  5. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  6. luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法

    P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...

  7. 最短路径----SPFA算法

    求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们 ...

  8. LD1-B(最短路径-SPFA)

    题目链接 /* *题目大意: *给定v个点的重量,并给定e条边,每条边具有一个权值; *在e条边中选v-1条边使这v个点成为一棵树; *定义这棵树的代价为(每棵子树节点重量和其子树根到父节点的边的权值 ...

  9. 【SPFA与Dijkstra的对比】CDOJ 1961 咸鱼睡觉觉【差分约束-负权最短路径SPFA】

    差分约束系统,求最小值,跑最长路. 转自:https://www.cnblogs.com/ehanla/p/9134012.html 题解:设sum[x]为前x个咕咕中至少需要赶走的咕咕数,则sum[ ...

随机推荐

  1. Spring Annotation vs XML - 示例

    来源:  http://hanqunfeng.iteye.com/blog/2113820 作者hanqunfeng的示例文件: (可下载) web-mvc.zip

  2. :before和:after的内幕以及伪类

    pseudo-classes vs pseudo-elements http://m.blog.csdn.net/blog/zhuizhuziwo/7897837

  3. 制作一个vagrant的win7 box

    准备: 1.win7镜像文件 2.vagrant安装文件 3.virtual box安装文件 步骤: 1.先在本机上安装virtualbox和vagrant,本机为win7,安装虚机也为win7 2. ...

  4. ASP.NET MVC5 学习笔记-4 OWIN和Katana

    1. Owin OWIN全名:Open Web Interface for .NET. 它是一个说明,而非一个框架,该声明用来实现Web服务器和框架的松耦合.它提供了模块化.轻量级和便携的设计.类似N ...

  5. inlay检验标准

    Inlay 检验标准 检验条件及要求 正常的 40W 日光灯下距离被检物 50cm,眼睛距离被检物 30cm,与被检物呈 45 度角,目视检 使用强光灯箱透视其内部结构 适用范围 Inlay 中料 检 ...

  6. HDU 2673 shǎ崽 OrOrOrOrz

    #include <cstdio> #include <algorithm> using namespace std; int main() { int n; while (s ...

  7. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  8. Java-线程间通信

    Java-线程间通信 一 线程通讯 就是多个线程操作同一个资源,可是操作的动作不同 二 停止线程: 控制住run的循环就能够控制线程结束 当线程处于冻结状态,就不会读取标记,线程就不会结束 inter ...

  9. c#语言基础之组成结构

    一.项目结构 .cs---    源文件(程序代码) .csproj---项目文件(管理文件项) .sln---   解决方案文件(管理项目) .config---配置文件 函数的四要素:名称.输入. ...

  10. MySQL 5.7.14 安装

    http://www.cnblogs.com/zcGu/articles/5740936.html 因笔者个人需要需要在本机安装Mysql,先将安装过程记录如下,希望对他人有所参考. 一, 1, 进入 ...