系统的学习一遍图论!从这篇博客开始!

先介绍一些概念。

无向图:

G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路。

如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路。

具有欧拉回路的无向图G称为欧拉图。

有向图:

D为基图连通的有向图,则称经过D的每一条边并且仅一次的路径为有向欧拉通路。

如果该通路是回路,则称为有向欧拉回路。

具有有向欧拉回路的有向图D称为有向欧拉图。

无向图判断欧拉通路:G为连通图,且仅有两个奇度的节点或者无奇度节点。

如果有两个奇度的点,那么这两点必定为欧拉通路的起点和终点。

如果没有奇度的节点,那么该图一定有欧拉回路。

有向图判断欧拉通路:D的基图连通,并且所有节点的出度和入度相同,那么该图存在有向欧拉回路。

如果仅有两个节点的出度和入度之差为1和-1,那么该图一定存在欧拉通路,并且一定以入度出度之差为-1的点为起点,入度出度之差为1的点为终点。

/************************************************************以上概念******************************************************************/

接下来介绍这道题。

题意就是能否从一个点出发,经过所有的边,回到节点0。

思路:就是判断一下,如果起点就是0,那么就是求是否存在欧拉回路。

如果起点不是0,那么就是求是否存在欧拉通路,并且欧拉通路的起点终点为0和输入的起点。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2505
#define inf 1<<28
#define LL(x) ( x << 1 )
#define RR(x) ( x << 1 | 1 )
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define PII pair<int,int>
using namespace std; inline void RD(int &ret) {
char c;
do {
c = getchar();
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
inline void OT(int a){
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
}
#define N 1111
char in[111] ;
int degree[N] ;
int main() {
while(cin >> in){
if(in[0] == 'E')break ;
mem(degree , 0) ;
int n , m ;
cin >> n >> m ;
getchar() ;
int sum = 0 ;
for (int i = 0 ; i < m ;i ++ ){
int now ;
gets(in) ;
int l = strlen(in) ;
if(!l)continue ;
int num = 0 ;
for (int j = 0 ;j < l ;j ++ ){
if(in[j] == ' '){
degree[i] ++ ;
degree[num] ++ ;
sum ++ ;
num = 0 ;
}
else {
num = num * 10 + (in[j] - '0') ;
}
}
if(num){
degree[i] ++ ;
degree[num] ++ ;
sum ++ ;
}
}
cin >> in ;
int odd = 0 ;
int even = 0 ;
for (int i = 0 ; i < m ; i ++ ){
if(degree[i] & 1)odd ++ ;
else even ++ ;
}
if(!odd){
if(n == 0){
printf("YES %d\n",sum) ;
}
else {
puts("NO") ;
}
}
else {
if(odd == 2){
if((degree[n] & 1) && (degree[0] & 1) && (n != 0)){
printf("YES %d\n" ,sum) ;
}
else {
puts("NO") ;
}
}else {
puts("NO") ;
}
}
}
return 0 ;
}

POJ 1300 欧拉通路&欧拉回路的更多相关文章

  1. HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路

    给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...

  2. 欧拉回路&欧拉通路判断

    欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉通路是否存在的方法 ...

  3. poj 2513 连接火柴 字典树+欧拉通路 好题

    Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 27134   Accepted: 7186 ...

  4. Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash

    题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点   或者 ...

  5. POJ 2513 无向欧拉通路+字典树+并查集

    题目大意: 有一堆头尾均有颜色的木条,要让它们拼接在一起,拼接处颜色要保证相同,问是否能够实现 这道题我一开始利用map<string,int>来对颜色进行赋值,好进行后面的并查操作以及欧 ...

  6. POJ 1386 Play on Words(有向欧拉通路 连通图)

    题意  见下方中文翻译 每一个单词能够看成首尾两个字母相连的一条边  然后就是输入m条边  推断是否能构成有向欧拉通路了 有向图存在欧拉通路的充要条件: 1. 有向图的基图连通: 2. 全部点的出度和 ...

  7. POJ 1300 Door Man(欧拉回路的判定)

    题目链接 题意 : 庄园有很多房间,编号从0到n-1,能否找到一条路径经过所有开着的门,并且使得通过门之后就把门关上,关上的再也不打开,最后能回到编号为0的房间. 思路 : 这就是一个赤裸裸的判断欧拉 ...

  8. poj2513- Colored Sticks 字典树+欧拉通路判断

    题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...

  9. hdu1116有向图判断欧拉通路判断

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

随机推荐

  1. [TypeScript] Avoid any type

    To avoid using "any" type is a best pratice. The reason for that is it disable the power o ...

  2. Android ActionBar完全解析,使用官方推荐的最佳导航栏(上)

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/18234477 本篇文章主要内容来自于Android Doc,我翻译之后又做了些加工 ...

  3. android studio 报ambiguous method call

    如题,在android studio中调用this.toString时,提示的错误信息是ambiguous method call. both get class () in object and g ...

  4. datatable列操作

    DataTable myDt =dt;  //删除列  myDt.Columns.Remove("minArea");  myDt.Columns.Remove("max ...

  5. 工欲善其事必先利其器---SQL在线可视化模型设计,(还可学习拖拽知识)

    作为技术人员,在开发项目中,不可避免的要跟数据库打交道,一个完整的项目正常情况下是讨论完整体需求,有了大致的框框在脑海中后,是需要设计合理的数据库的,这时会有其他的专业的UML建模工具可以使用, 但是 ...

  6. 1 Intellij IDEA 个人常用快捷方式

    个人常用快捷方式 alt+enter    万能键                                          inn if(xxx!=null) iter foreach ct ...

  7. 【劳动节江南白衣Calvin 】我的后端开发书架2015

    自从技术书的书架设定为”床底下“之后,又多了很多买书的空间.中国什么都贵,就是书便宜. 不定期更新,在碎片化的阅读下难免错评. 书架主要针对Java后端开发,书单更偏爱那些能用简短流畅的话,把少壮不努 ...

  8. jquery height、innerHeight、outHeight

    JQuery有很多的height,不总结一下你就要被他搞晕,所以为了保持清醒,汇总在下面 height:height innerHeight:height+padding outerHeight(fa ...

  9. Python一路走来 Python算法

    冒泡排序: 1,2位置左右比较.大的排右边,继续比较2,3 ...... list=[5,7,2,8,12,1] #print(len(list)) for j in range(len(list)) ...

  10. cubieboardtruck安装

    1.命令关闭所有led灯 ls /sys/class/leds/*/brightness | xargs -i -n1 echo "echo 0 > {}" | sh 如果需 ...