1396 - Most Distant Point from the Sea
题意:
按顺序给出一小岛(多边形)的点
求岛上某点离海最远的距离
解法:
不断的收缩多边形(求半平面交)
直到无限小
二分收缩的距离即可
如图
- //大白p263
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <queue>
- #include <functional>
- #include <set>
- #include <iostream>
- #include <vector>
- #include <algorithm>
- using namespace std;
- const double eps=1e-7;//精度
- const int INF=0x3f3f3f3f;
- const double PI=acos(-1.0);
- int dcmp(double x){//判断double等于0或。。。
- if(fabs(x)<eps)return 0;else return x<0?-1:1;
- }
- struct Point{
- double x,y;
- Point(double x=0,double y=0):x(x),y(y){}
- };
- typedef Point Vector;
- typedef vector<Point> Polygon;
- Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
- Vector operator-(Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
- Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
- Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
- bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
- bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
- bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
- struct Segment{
- Point a,b;
- Segment(){}
- Segment(Point _a,Point _b){a=_a,b=_b;}
- bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
- bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
- };
- struct Circle{
- Point c;
- double r;
- Circle(){}
- Circle(Point _c, double _r):c(_c),r(_r) {}
- Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
- bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
- };
- struct Line{
- Point p;
- Vector v;
- double ang;
- Line() {}
- Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
- bool operator<(const Line &L)const{return ang < L.ang;}
- };
- double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积
- double Length(Vector a){return sqrt(Dot(a,a));}//|a| 向量长度
- double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ
- double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积
- double Area2(Point a,Point b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点
- double DegreeToRadius(double deg){return deg/180*PI;}
- double GetRerotateAngle(Vector a,Vector b){//向量a顺时针旋转theta度得到向量b的方向
- double tempa=Angle(a,Vector(1,0));
- if(a.y<0) tempa=2*PI-tempa;
- double tempb=Angle(b,Vector(1,0));
- if(b.y<0) tempb=2*PI-tempb;
- if((tempa-tempb)>0) return tempa-tempb;
- else return tempa-tempb+2*PI;
- }
- double torad(double deg){return deg/180*PI;}//角度化为弧度
- Vector Rotate(Vector a,double rad){//向量逆时针旋转rad弧度
- return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
- }
- Vector Normal(Vector a){//计算单位法线
- double L=Length(a);
- return Vector(-a.y/L,a.x/L);
- }
- Point GetLineProjection(Point p,Point a,Point b){//点在直线上的投影
- Vector v=b-a;
- return a+v*(Dot(v,p-a)/Dot(v,v));
- }
- Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
- Vector u=p-q;
- double t=Cross(w,u)/Cross(v,w);
- return p+v*t;
- }
- int ConvexHull(Point* p,int n,Point* sol){//计算凸包
- sort(p,p+n);
- int m=0;
- for(int i=0;i<n;i++){
- while(m>1&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
- sol[m++]=p[i];
- }
- int k=m;
- for(int i=n-2;i>=0;i--){
- while(m>k&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
- sol[m++]=p[i];
- }
- if(n>0) m--;
- return m;
- }
- double Heron(double a,double b,double c){//海伦公式
- double p=(a+b+c)/2;
- return sqrt(p*(p-a)*(p-b)*(p-c));
- }
- bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){//线段规范相交判定
- double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
- double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
- return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
- }
- double CutConvex(const int n,Point* poly, const Point a,const Point b, vector<Point> result[3]){//有向直线a b 切割凸多边形
- vector<Point> points;
- Point p;
- Point p1=a,p2=b;
- int cur,pre;
- result[0].clear();
- result[1].clear();
- result[2].clear();
- if(n==0) return 0;
- double tempcross;
- tempcross=Cross(p2-p1,poly[0]-p1);
- if(dcmp(tempcross)==0) pre=cur=2;
- else if(tempcross>0) pre=cur=0;
- else pre=cur=1;
- for(int i=0;i<n;i++){
- tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
- if(dcmp(tempcross)==0) cur=2;
- else if(tempcross>0) cur=0;
- else cur=1;
- if(cur==pre){
- result[cur].push_back(poly[(i+1)%n]);
- }
- else{
- p1=poly[i];
- p2=poly[(i+1)%n];
- p=GetLineIntersection(p1,p2-p1,a,b-a);
- points.push_back(p);
- result[pre].push_back(p);
- result[cur].push_back(p);
- result[cur].push_back(poly[(i+1)%n]);
- pre=cur;
- }
- }
- sort(points.begin(),points.end());
- if(points.size()<2){
- return 0;
- }
- else{
- return Length(points.front()-points.back());
- }
- }
- double DistanceToSegment(Point p,Segment s){//点到线段的距离
- if(s.a==s.b) return Length(p-s.a);
- Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
- if(dcmp(Dot(v1,v2))<0) return Length(v2);
- else if(dcmp(Dot(v1,v3))>0) return Length(v3);
- else return fabs(Cross(v1,v2))/Length(v1);
- }
- bool isPointOnSegment(Point p,Segment s){
- return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0;
- }
- int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
- int wn=0;
- for(int i=0;i<n;i++){
- Point& p2=poly[(i+1)%n];
- if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上
- int k=dcmp(Cross(p2-poly[i],p-poly[i]));
- int d1=dcmp(poly[i].y-p.y);
- int d2=dcmp(p2.y-p.y);
- if(k>0&&d1<=0&&d2>0)wn++;
- if(k<0&&d2<=0&&d1>0)wn--;
- }
- if(wn) return 1;//点在内部
- else return 0;//点在外部
- }
- double PolygonArea(Point* p,int n){//多边形有向面积
- double area=0;
- for(int i=1;i<n-1;i++)
- area+=Cross(p[i]-p[0],p[i+1]-p[0]);
- return area/2;
- }
- int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数
- double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
- double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
- double delta = f*f - 4*e*g;
- if(dcmp(delta) < 0) return 0;//相离
- if(dcmp(delta) == 0) {//相切
- p1=p1=C.point(-f/(2*e));
- return 1;
- }//相交
- p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
- p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
- return 2;
- }
- double rotating_calipers(Point *ch,int n)//旋转卡壳
- {
- int q=1;
- double ans=0;
- ch[n]=ch[0];
- for(int p=0;p<n;p++)
- {
- while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
- q=(q+1)%n;
- ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
- }
- return ans;
- }
- Polygon CutPolygon(Polygon poly,Point a,Point b){//用a->b切割多边形 返回左侧
- Polygon newpoly;
- int n=poly.size();
- for(int i=0;i<n;i++){
- Point c=poly[i];
- Point d=poly[(i+1)%n];
- if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c);
- if(dcmp(Cross(b-a,c-d))!=0){
- Point ip=GetLineIntersection(a,b-a,c,d-c);
- if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip);
- }
- }
- return newpoly;
- }
- int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){//求两圆相交
- double d=Length(c1.c-c2.c);
- if(dcmp(d)==0){
- if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合
- return 0;
- }
- if(dcmp(c1.r+c2.r-d)<0) return 0;
- if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0;
- double a=Angle(c2.c-c1.c,Vector(1,0));
- double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
- p1=c1.point(a-da);p2=c1.point(a+da);
- if(p1==p2) return 1;
- return 2;
- }
- bool isPointOnleft(Point p,Line L){return dcmp(Cross(L.v,p-L.p))>0;}
- int HalfplaneIntersection(Line *L,int n,Point* poly){//半平面交
- sort(L,L+n);
- int first,last;
- Point* p=new Point[n];
- Line* q=new Line[n];
- q[first=last=0]=L[0];
- for(int i=1;i<n;i++){
- while(first<last&&!isPointOnleft(p[last-1],L[i])) last--;
- while(first<last&&!isPointOnleft(p[first],L[i])) first++;
- q[++last]=L[i];
- if(dcmp(Cross(q[last].v,q[last-1].v))==0){
- last--;
- if(isPointOnleft(L[i].p,q[last])) q[last]=L[i];
- }
- if(first<last) p[last-1]=GetLineIntersection(q[last-1].p,q[last-1].v,q[last].p,q[last].v);
- }
- while(first<last&&!isPointOnleft(p[last-1],q[first])) last--;
- if(last-first<=1) return 0;
- p[last]=GetLineIntersection(q[last].p,q[last].v,q[first].p,q[first].v);
- int m=0;
- for(int i=first;i<=last;i++) poly[m++]=p[i];
- return m;
- }
- //两点式化为一般式A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A);
- //--------------------------------------
- //--------------------------------------
- //--------------------------------------
- //--------------------------------------
- //--------------------------------------
- Point p[200],poly[200];
- Line L[200];
- Vector v[200],v2[200];
- int main(){
- int n;
- while(scanf("%d",&n)&&n){
- int m,x,y;
- for(int i=0;i<n;i++)
- scanf("%lf%lf",&p[i].x,&p[i].y);
- for(int i=0;i<n;i++){
- v[i]=p[(i+1)%n]-p[i];
- v2[i]=Normal(v[i]);
- }
- double left=0,right=20000;
- while(dcmp(right-left)>0){
- double mid=left+(right-left)/2;
- for(int i=0;i<n;i++) L[i]=Line(p[i]+v2[i]*mid,v[i]);
- m=HalfplaneIntersection(L,n,poly);
- if(!m) right=mid;
- else left=mid;
- }
- printf("%.6lf\n",left);
- }
- return 0;
- }
1396 - Most Distant Point from the Sea的更多相关文章
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- uva 1396 - Most Distant Point from the Sea
半平面的交,二分的方法: #include<cstdio> #include<algorithm> #include<cmath> #define eps 1e-6 ...
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- 【POJ】【3525】Most Distant Point from the Sea
二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- POJ3525-Most Distant Point from the Sea(二分+半平面交)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3955 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)
按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...
随机推荐
- Ajax中XML和JSON格式的优劣比较
刚做完一个小的使用Ajax的项目.整个小项目使用JavaScript做客户端,使用PHP做服务器端.利用xmlHttpRequest组件作为交互工具,利用XML作为数据传输的格式.做完后基本做一个简单 ...
- 括号匹配算法 C语言实现
#include <stdio.h> #include <malloc.h> //malloc,realloc #include <math.h> //含有over ...
- 引用(ajaxfileupload.js) ajaxfileupload.js报这错jQuery.handleError is not a function
jQuery.handleError is not a function 原因是,经测试handlerError只在jquery-1.4.2之前的版本中存在,jquery-1.6 和1.7中都没有这个 ...
- SQL Server 执行计划重编译的两大情况
1.与正确性相关的重编译 1.为表或视图添加列,删除列. 2.为表添加约束.默认值.规则,删除约束.默认值.规则. 3.为表或视图添加索引. 4.如果计划用不用索引而这个索引被删除. 5.删除表中的统 ...
- SQL Server 固定角色
1. 查看固定服务器角色 execute sp_helpsrvrole; 管理: execute master..sp_addsrvrolemember @logingName='neeky' @ro ...
- 蓝桥杯之K好数问题
问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如K = 4,L = 2的时候,所有K好数为11.13.20.22 ...
- hdu--1800--字典树&&其他
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1800 根据题意可知:意思是有若干个飞行员,需要在扫帚上练习飞行,每个飞行员具有不同的等级,且等级高的飞 ...
- Android之SplashActivity的巧妙之处
众所周知,我们很多应用都会有一个SplashActivity,用来当作进入应用的第一个过度界面,显示一个logo信息.如下所示,是我的简洁天气的SplashActivity. 但是,它的作用仅仅只是用 ...
- Android 启动Activity的方式
Activity的启动分为两种方式,显示方式和隐式方式,显示方式就是在通过intent启动Activity时指定了Activity的包名和类名. 而隐式方式则在初始化Intent时仅仅指定action ...
- Jave中System.getProperty()获取的值
java.version Java 执行时环境版本号 java.vendor Java 执行时环境供应商 java.vendor.url Java 供应商的 URL java.home Java 安装 ...