1 概述

链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 
设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串Hash函数在执行效率、离散性、空间利用率等方面的性能问题。

打造最快的Hash表(和Blizzard的对话)

先提一个简单的问题,如果有一个庞大的字符串数组,然后给你一个单独的字符串,让你从这个数组中查找是否有这个字符串并找到它,你会怎么做?

有一个方法最简单,老老实实从头查到尾,一个一个比较,直到找到为止,我想只要学过程序设计的人都能把这样一个程序作出来。

最合适的算法自然是使用HashTable(哈希表),先介绍介绍其中的基本知识,所谓Hash,一般是一个整数,通过某种算法,可以把一个字符串"压缩" 成一个整数,这个数称为Hash,当然,无论如何,一个32位整数是无法对应回一个字符串的,但在程序中,两个字符串计算出的Hash值相等的可能非常小,下面看看在MPQ中的Hash算法

unsigned long HashString(char *lpszFileName, unsigned long dwHashType)

unsigned char *key = (unsigned char *)lpszFileName;
unsigned long seed1 = 0x7FED7FED, seed2 = 0xEEEEEEEE;
int ch;

while(*key != 0)

   ch = toupper(*key++);

seed1 = cryptTable[(dwHashType << 8) + ch] ^ (seed1 + seed2);
seed2 = ch + seed1 + seed2 + (seed2 << 5) + 3; 
}
return seed1; 
}

Blizzard的这个算法是非常高效的,被称为"One-Way Hash",举个例子,字符串"unitneutralacritter.grp"通过这个算法得到的结果是0xA26067F3。

int GetHashTablePos(char *lpszString, SOMESTRUCTURE *lpTable, int nTableSize)

int nHash = HashString(lpszString), nHashPos = nHash % nTableSize;

if (lpTable[nHashPos].bExists && !strcmp(lpTable[nHashPos].pString, lpszString)) 
   return nHashPos; 
else 
   return -1; //Error value 
}

看到此,我想大家都在想一个很严重的问题:"如果两个字符串在哈希表中对应的位置相同怎么办?",毕竟一个数组容量是有限的,这种可能性很大。解决该问题的方法很多,我首先想到的就是用"链表",感谢大学里学的数据结构教会了这个百试百灵的法宝,我遇到的很多算法都可以转化成链表来解决,只要在哈希表的每个入口挂一个链表,保存所有对应的字符串就OK了。

然而Blizzard的程序员使用的方法则是更精妙的方法。基本原理就是:他们在哈希表中不是用一个哈希值而是用三个哈希值来校验字符串。如果说两个不同的字符串经过一个哈希算法得到的入口点一致有可能,但用三个不同的哈希算法算出的入口点都一致,那几乎可以肯定是不可能的事了,这个几率是1: 18889465931478580854784,大概是10的 22.3次方分之一,对一个游戏程序来说足够安全了。

现在再回到数据结构上,Blizzard使用的哈希表没有使用链表,而采用"顺延"的方式来解决问题,看看这个算法:
int GetHashTablePos(char *lpszString, MPQHASHTABLE *lpTable, int nTableSize)

const int HASH_OFFSET = 0, HASH_A = 1, HASH_B = 2;
int nHash = HashString(lpszString, HASH_OFFSET);
int nHashA = HashString(lpszString, HASH_A);
int nHashB = HashString(lpszString, HASH_B);
int nHashStart = nHash % nTableSize, nHashPos = nHashStart;

while (lpTable[nHashPos].bExists)

   if (lpTable[nHashPos].nHashA == nHashA && lpTable[nHashPos].nHashB == nHashB) 
    return nHashPos; 
   else 
    nHashPos = (nHashPos + 1) % nTableSize;

if (nHashPos == nHashStart) 
    break; 
}

return -1; //Error value 
}

1. 计算出字符串的三个哈希值(一个用来确定位置,另外两个用来校验)
2. 察看哈希表中的这个位置
3. 哈希表中这个位置为空吗?如果为空,则肯定该字符串不存在,返回
4. 如果存在,则检查其他两个哈希值是否也匹配,如果匹配,则表示找到了该字符串,返回
5. 移到下一个位置,如果已经越界,则表示没有找到,返回
6. 看看是不是又回到了原来的位置,如果是,则返回没找到
7. 回到3

/////////////////////////////////////////////////////////

其他的一些哈希函数:

/////////////////////////////////////////////////////////

2经典字符串Hash函数介绍 
作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 
2.1 PHP中出现的字符串Hash函数 
static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) 

unsigned long h = 0, g; 
char *arEnd=arKey+nKeyLength;

while (arKey < arEnd) { 
h = (h << 4) + *arKey++; 
if ((g = (h & 0xF0000000))) { 
h = h ^ (g >> 24); 
h = h ^ g; 


return h; 

2.2 OpenSSL中出现的字符串Hash函数 
unsigned long lh_strhash(char *str) 

int i,l; 
unsigned long ret=0; 
unsigned short *s;

if (str == NULL) return(0); 
l=(strlen(str)+1)/2; 
s=(unsigned short *)str; 
for (i=0; i 
ret^=(s[i]<<(i&0x0f)); 
return(ret); 
} */

/* The following hash seems to work very well on normal text strings 
* no collisions on /usr/dict/words and it distributes on %2^n quite 
* well, not as good as MD5, but still good. 
*/ 
unsigned long lh_strhash(const char *c) 

unsigned long ret=0; 
long n; 
unsigned long v; 
int r;

if ((c == NULL) || (*c == '/0')) 
return(ret); 
/* 
unsigned char b[16]; 
MD5(c,strlen(c),b); 
return(b[0]|(b[1]<<8)|(b[2]<<16)|(b[3]<<24)); 
*/

n=0x100; 
while (*c) 

v=n|(*c); 
n+=0x100; 
r= (int)((v>>2)^v)&0x0f; 
ret=(ret(32-r)); 
ret&=0xFFFFFFFFL; 
ret^=v*v; 
c++; 

return((ret>>16)^ret); 

在下面的测量过程中我们分别将上面的两个函数标记为OpenSSL_Hash1和OpenSSL_Hash2,至于上面的实现中使用MD5算法的实现函数我们不作测试。 
2.3 MySql中出现的字符串Hash函数 
#ifndef NEW_HASH_FUNCTION

/* Calc hashvalue for a key */

static uint calc_hashnr(const byte *key,uint length) 

register uint nr=1, nr2=4; 
while (length--) 

nr^= (((nr & 63)+nr2)*((uint) (uchar) *key++))+ (nr << 8); 
nr2+=3; 

return((uint) nr); 
}

/* Calc hashvalue for a key, case indepenently */

static uint calc_hashnr_caseup(const byte *key,uint length) 

register uint nr=1, nr2=4; 
while (length--) 

nr^= (((nr & 63)+nr2)*((uint) (uchar) toupper(*key++)))+ (nr << 8); 
nr2+=3; 

return((uint) nr); 
}

#else

/* 
* Fowler/Noll/Vo hash 

* The basis of the hash algorithm was taken from an idea sent by email to the 
* IEEE Posix P1003.2 mailing list from Phong Vo (kpv@research.att.com) and 
* Glenn Fowler (gsf@research.att.com). Landon Curt Noll (chongo@toad.com
* later improved on their algorithm. 

* The magic is in the interesting relationship between the special prime 
* 16777619 (2^24 + 403) and 2^32 and 2^8. 

* This hash produces the fewest collisions of any function that we've seen so 
* far, and works well on both numbers and strings. 
*/

uint calc_hashnr(const byte *key, uint len) 

const byte *end=key+len; 
uint hash; 
for (hash = 0; key < end; key++) 

hash *= 16777619; 
hash ^= (uint) *(uchar*) key; 

return (hash); 
}

uint calc_hashnr_caseup(const byte *key, uint len) 

const byte *end=key+len; 
uint hash; 
for (hash = 0; key < end; key++) 

hash *= 16777619; 
hash ^= (uint) (uchar) toupper(*key); 

return (hash); 
}

#endif 
Mysql中对字符串Hash函数还区分了大小写,我们的测试中使用不区分大小写的字符串Hash函数,另外我们将上面的两个函数分别记为MYSQL_Hash1和MYSQL_Hash2。 
2.4 另一个经典字符串Hash函数 
unsigned int hash(char *str) 

register unsigned int h; 
register unsigned char *p;

for(h=0, p = (unsigned char *)str; *p ; p++) 
h = 31 * h + *p;

return h; 

3 测试及结果 
3.1 测试说明 
从上面给出的经典字符串Hash函数中可以看出,有的涉及到字符串大小敏感问题,我们的测试中只考虑字符串大小写敏感的函数,另外在上面的函数中有的函数需要长度参数,有的不需要长度参数,这对函数本身的效率有一定的影响,我们的测试中将对函数稍微作一点修改,全部使用长度参数,并将函数内部出现的计算长度代码删除。 
我们用来作测试用的Hash链表采用经典的拉链法解决冲突,另外我们采用静态分配桶(Hash链表长度)的方法来构造Hash链表,这主要是为了简化我们的实现,并不影响我们的测试结果。 
测试文本采用单词表,测试过程中从一个输入文件中读取全部不重复单词构造一个Hash表,测试内容分别是函数总调用次数、函数总调用时间、最大拉链长度、 平均拉链长度、桶利用率(使用过的桶所占的比率),其中函数总调用次数是指Hash函数被调用的总次数,为了测试出函数执行时间,该值在测试过程中作了一 定的放大,函数总调用时间是指Hash函数总的执行时间,最大拉链长度是指使用拉链法构造链表过程中出现的最大拉链长度,平均拉链长度指拉链的平均长度。 
测试过程中使用的机器配置如下: 
PIII600笔记本,128M内存,windows 2000 server操作系统。 
3.2 测试结果 
以下分别是对两个不同文本文件中的全部不重复单词构造Hash链表的测试结果,测试结果中函数调用次数放大了100倍,相应的函数调用时间也放大了100倍。

从上表可以看出,这些经典软件虽然构造字符串Hash函数的方法不同,但是它们的效率都是不错的,相互之间差距很小,读者可以参考实际情况从其中借鉴使用。

转自:http://blog.csdn.net/hengyunabc/article/details/5914934

更多:https://www.byvoid.com/blog/string-hash-compare

http://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html

字符串经典的hash算法的更多相关文章

  1. 几种经典的hash算法

    计算理论中,没有Hash函数的说法,只有单向函数的说法.所谓的单向函数,是一个复杂的定义,大家可以去看计算理论或者密码学方面的数据.用“人 类”的语言描述单向函数就是:如果某个函数在给定输入的时候,很 ...

  2. 【区块链】【一】Hash 算法【转】

    问题导读1.哈希算法在区块链的作用是什么?2.什么是哈希算法?3.哈希算法是否可逆?4.比特币采用的是什么哈希算法? 作用在学习哈希算法前,我们需要知道哈希在区块链的作用哈希算法的作用如下:区块链通过 ...

  3. 怎样的 Hash 算法能对抗硬件破解

    前言 用过暴力破解工具 hashcat 的都知道,这款软件的强大之处在于它能充分利用 GPU 计算,比起 CPU 要快很多.所以在破解诸如 WiFi 握手包.数据库中的口令 Hash 值时,能大幅提高 ...

  4. 记录几个经典的字符串hash算法

    记录几个经典的字符串hash算法,方便以后查看: 推荐一篇文章: http://www.partow.net/programming/hashfunctions/# (1)暴雪字符串hash #inc ...

  5. 暴雪HASH算法(转)

    暴雪公司有个经典的字符串的hash公式 先提一个简单的问题,假如有一个庞大的字符串数组,然后给你一个单独的字符串,让你从这个数组中查找是否有这个字符串并找到它,你会怎么做? 有一个方法最简单,老老实实 ...

  6. hash算法

    作者:July.wuliming.pkuoliver 说明:本文分为三部分内容, 第一部分为一道百度面试题Top K算法的详解:第二部分为关于Hash表算法的详细阐述:第三部分为打造一个最快的Hash ...

  7. 【Todo】字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树

    另开一文分析字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树. 先来一个汇总, 算法: 本文中提到的字符串匹配算法有:KMP, BM, Horspool, Sunday, BF, ...

  8. [区块链] 密码学中Hash算法(基础)

    在介绍Hash算法之前,先给大家来个数据结构中对hash表(散列表)的简单解释,然后我再逐步深入,讲解一下hash算法. 一.Hash原理——基础篇 1.1 概念 哈希表就是一种以 键-值(key-i ...

  9. Hash算法的讲解

    散列表,又叫哈希表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法.顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙. 散列表(Hash ta ...

随机推荐

  1. eclipse 使用maven 创建springmvc + mybatis

    接着eclipse 使用maven 创建纯spring mvc项目 毕竟项目都要访问数据库的, 所以加上mybatis的支持也就是网上大多时候说的 SSM框架的搭建(Spring + Spring M ...

  2. ajax在ie下返回未定义解决方案

    有时候用ajax进行请求,接收到的数据在火狐下很正常,但在ie浏览器下确是undefined,这是因为后端php输入json时没有统一指定contentType头导致的,只需在php文件中加入head ...

  3. Activity关闭另一个Acitivity

    1.ActivityA跳转到ActivityB 2.ActivityB跳转到ActivityC 3.ActivityC结束掉自己的同时结束ActivityB 在ActivityB中声明一个自己的参数i ...

  4. javascript 数据结构和算法读书笔记 > 第三章 列表

    1. 结构分析 列表首先要有以下几个属性: listSize 长度 pos 当前位置 dataStore 数据 我们要通过以下方法对上面三个属性进行操作: length() 获取长度 | getPos ...

  5. MFC 双缓冲加载背景

    首先定义DCmemDc和Bitmap CDC DCmemDc: CBitmap memBitmap; CBitmap *oldBitmap; 然后创建一个适应当前内存的DCmemDc CDC * dc ...

  6. 【自学php】第四天 - 使用数组

    php支持两种数组,数字索引数组和关联数组.关联数组有点类似Map,可以用字符串或其他数据类型做键对应相应的值保存在数组中. 1.初始化数组 数字索引数组的初始化可以使用如下代码: $products ...

  7. PTF在PET上印刷線路的注意事項

    PTF: Polymer Thick Film (聚合厚模),維基的解釋 PET: Polyethylene terephthalate (聚乙烯對苯二甲酸酯),維基的解釋 就如同大家所知道的,相較於 ...

  8. POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)

    [题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...

  9. c++多态的简单理解

    基类中有一个抽象函数 很多个子类继承这个基类 要想使用将子类的对象赋值给基类对象,且使用基类对象可以调用到子类对象的方法,那么这个方法必须是在基类中抽象的,子类中实现的.如果基类中这个方法不是抽象方法 ...

  10. Log4Net不生成日志文件

    可能没有初始化配置,在Global文件Application_Start添加 log4net.Config.XmlConfigurator.Configure(); 或者输出日志进行初始化,如(Log ...