GDAL原生支持超过100种栅格数据类型,涵盖所有主流GIS与RS数据格式,包括
•  ArcInfo grids, ArcSDE raster, Imagine, Idrisi, ENVI, GRASS, GeoTIFF
•  HDF4, HDF5
•  USGS DOQ, USGS DEM
•  ECW, MrSID
•  TIFF, JPEG, JPEG2000, PNG, GIF, BMP
完整的支持列表可以参考http://www.gdal.org/formats_list.html

导入GDAL支持库
旧版本(1.5以前):import gdal, gdalconst
新版本(1.6以后):from osgeo import gdal, gdalconst
gdal和gdalconst最好都要导入,其中gdalconst中的常量都加了前缀,力图与其他的module冲突最小。所以对gdalconst你可以直接这样导入:from osgeo.gdalconst import *

GDAL数据驱动,与OGR数据驱动类似,需要先创建某一类型的数据驱动,再创建响应的栅格数据集。
一次性注册所有的数据驱动,但是只能读不能写:gdal.AllRegister()
单独注册某一类型的数据驱动,这样的话可以读也可以写,可以新建数据集:
driver = gdal.GetDriverByName('HFA')
driver.Register()

打开已有的栅格数据集:
   fn = 'aster.img'
   ds = gdal.Open(fn, GA_ReadOnly)
   if ds is None:
      print 'Could not open ' + fn
       sys.exit(1)
读取栅格数据集的x方向像素数,y方向像素数,和波段数
cols = ds.RasterXSize
   rows = ds.RasterYSize
   bands = ds.RasterCount
注意后面没有括号,因为他们是属性(properties)不是方法(methods)
读取地理坐标参考信息(georeference info)
GeoTransform是一个list,存储着栅格数据集的地理坐标信息
   adfGeoTransform[0] 
   adfGeoTransform[1] 
   adfGeoTransform[2] 
   adfGeoTransform[3] 
   adfGeoTransform[4] 
   adfGeoTransform[5]
注意栅格数据集的坐标一般都是以左上角为基准的。
下面的例子是从一个栅格数据集中取出Geotransform作为一个list,然后读取其中的数据
   geotransform = ds.GetGeoTransform()
   originX = geotransform[0]
   originY = geotransform[3]originY = geotransform[3]
   pixelWidth = geotransform[1]
   pixelHeight = geotransform[5]

计算某一坐标对应像素的相对位置(pixel offset),也就是该坐标与左上角的像素的相对位置,按像素数计算,计算公式如下:
xOffset = int((x – originX) / pixelWidth)
yOffset = int((y – originY) / pixelHeight)

读取某一像素点的值,需要分两步
首先读取一个波段(band):GetRasterBand(),其参数为波段的索引号
然后用ReadAsArray(, , , ),读出从(xoff,yoff)开始,大小为(xsize,ysize)的矩阵。如果将矩阵大小设为1X1,就是读取一个像素了。但是这一方法只能将读出的数据放到矩阵中,就算只读取一个像素也是一样。例如:
band = ds.GetRasterBand(1)
data = band.ReadAsArray(xOffset, yOffset, 1, 1)
如果想一次读取一整张图,那么将offset都设定为0,size则设定为整个图幅的size,例如:
data = band.ReadAsArray(0, 0, cols, rows)
但是要注意,从data中读取某一像素的值,必须要用data[yoff, xoff]。注意不要搞反了。数学中的矩阵是[row,col],而这里恰恰相反!这里面row对应y轴,col对应x轴。

注意在适当的时候释放内存,例如band = None 或者dataset = None。尤其当图很大的时候

如何更有效率的读取栅格数据?显然一个一个的读取效率非常低,将整个栅格数据集都塞进二维数组也不是个好办法,因为这样占的内存还是很多。更好的方法是按块(block)来存取数据,只把要用的那一块放进内存。本周的样例代码中有一个utils模块,可以读取block大小。
例如:
   import utils
   blockSize = utils.GetBlockSize(band)
   xBlockSize = blockSize[0]
   yBlockSize = blockSize[1]
平铺(tiled),即栅格数据按block存储。有的格式,例如GeoTiff没有平铺,一行是一个block。Erdas imagine格式则按64x64像素平铺。
如果一行是一个block,那么按行读取是比较节省资源的。
如果是平铺的数据结构,那么设定ReadAsArray()的参数值,让它一次只读入一个block,就是效率最高的方法了。例如:
rows = 13, cols = 11, xBSize = 5, yBSize = 5
for i in range(0, rows, yBSize):
if i + yBSize < rows:
        numRows = yBSize
else:
        numRows = rows – i
    for j in range(0, cols, xBSize):
        if j + xBSize < cols:
            numCols = xBSize
        else:
            numCols = colsnumCols = cols – j
        data = band.ReadAsArray(j, i, numCols, numRows)
这一段代码具有通用性,可以时常拿来用的。

下面介绍一点二维数组的处理技巧
这里要用到两个库,Numeric和numpy。Numeric比较老了,FWTools用它。自己安装配置的话还是配功能更强的numpy。
数据类型转换:
data = band.ReadAsArray(j, i, nCols, nRows)
data = data.astype(Numeric.Float) # Numeric
data = data.astype(numpy.float) # numpy
或者简单点只写一句
data = band.ReadAsArray(j, i, nCols, nRows).astype(Numeric.Float)

掩膜mask
这是Numeric和numpy库的功能,输入一个数组和条件,输出一个二值数组。例如
mask = Numeric.greater(data, 0)mask = Numeric.greater(data, 0)
>>> a = Numeric.array([0, 4, 6, 0, 2])
>>> print a
[0 4 6 0 2]
>>> mask = Numeric.greater(a, 0)
>>> print mask
[0 1 1 0 1]

数组求和
>>> a = Numeric.array([0, 4, 6, 0, 2])
>>> print a>>> print a
[0 4 6 0 2]
>>> print Numeric.sum(a)
12
如果是二维数组,那sum就会返回一个一维数组
>>> b = Numeric.array([a, [5, 10, 0, 3, 0]])
>>> print b
[[ 0      4  6  0  2]
[ 5 10  0  3  0]]
>>> print Numeric.sum(b)>>> print Numeric.sum(b)
[ 5 14  6  3  2]
所以,二维数组的求和就要这样
>>> print Numeric.sum(Numeric.sum(b))
30

这里有一个小技巧,统计大于0的像素个数,可以联合运用mask和sum两个函数
>>> print a
[0 4 6 0 2]
>>> mask = Numeric.greater(a, 0)
>>> print mask
[0 1 1 0 1]
>>> print Numeric.sum(mask)
3

GDAL生成Erdas Imagine的更多相关文章

  1. ERDAS IMAGINE 9.2安装破解方法

    Install the application. Copy the license.dat and ERDAS.exe to C:\Program Files\Leica Geosystems\Sha ...

  2. ERDAS IMAGINE 2014 32位 破解安装

    1.        安装Install ERDAS Foundation 2014 2.        安装ERDAS IMAGINE 2014  32位 3.        安装Intergraph ...

  3. GDAL 生成shp文件

    附件:http://pan.baidu.com/s/1i3GPwrV(C#版GDAL接口.dll) 示例程序: http://pan.baidu.com/s/1jpIKQ  (程序是在vs2008 x ...

  4. 翻译:利用GDAL生成cogeoff文件

    翻译自: Introducing the AWS Lambda Tiler https://hi.stamen.com/stamen-aws-lambda-tiler-blog-post-76fc11 ...

  5. 部分GDAL工具功能简介

    主要转自http://blog.csdn.net/liminlu0314?viewmode=contents 部分GDAL工具功能简介 gdalinfo.exe 显示GDAL支持的各种栅格文件的信息. ...

  6. GDAL——命令使用专题——gdalinfo命令

    GDAL——命令使用专题——gdalinfo命令  前言 GDAL(Geospatial Data Abstraction Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库.它利用 ...

  7. mongodb gdal 矢量数据格式驱动

    写了个mongodb的gdal driver,放在了github上,如果你需要,欢迎加入mongogis group. 直接的效果是使得QGIS, GeoServer, MapServer, ArcG ...

  8. GDAL库扩展Landsat系列MTL文件格式支持

    Landsat系列卫星提供的数据,一般都是每个波段一个tif文件,然后外加一个MTL.txt的元数据文件,使用gdal可以直接打开每个波段的tif文件,但是有时候想在打开tif数据的同时能够自动读取M ...

  9. GDAL库三个读取Jpeg2000格式驱动测试

    0.目的 GDAL库中提供了四五种读取Jpeg2000的驱动,但是各个驱动读取数据的效率各不相同,下面就针对三种读取jpeg2000的效率进行测试. GDAL库中提供的读取Jpeg2000的驱动有下面 ...

随机推荐

  1. POJ1149 PIGS [最大流 建图]

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20662   Accepted: 9435 Description ...

  2. Linux.NET学习手记(7)

    前一篇中,我们简单的讲述了下如何在Linux.NET中部署第一个ASP.NET MVC 5.0的程序.而目前微软已经提出OWIN并致力于发展VNext,接下来系列中,我们将会向OWIN方向转战. 早在 ...

  3. Linux CentOS7通过yum命令安装Mono(尝先安装模式)

    前言 经过尝试网上各种安装mono的技术贴,这个安装过程经历了大约2周,尝试了各个版本,几目前博客所描述的所有安装方式.以下内容的安装方式可以为你尝试不同版本的mono.并非正式环境安装标准方式安装. ...

  4. Linux 桌面美化那点事儿

    各个 Linux 桌面发行版刚拿到手的时候,或多或少都有点儿不满意,对它们进行一些改造是必须的.网上不乏各种 Linux 桌面美化的教程和经验贴,对我们这些 Linux 爱好者来说都是很好的参考资料. ...

  5. 在 Linux 中使用 Git 及其 和 Eclipse 的集成

    ##参考资料## 我是通过阅读<Pro Git>这本书学习 Git 的,我读的时候还是第一版的英文版,现在已经出第二版了,而且英文版和中文版都有.英文第二版的地址是 [https://gi ...

  6. ASP.NET MVC Model验证(三)

    ASP.NET MVC Model验证(三) 前言 上篇中说到在MVC框架中默认的Model验证是在哪里验证的,还讲到DefaultModelBinder类型的内部执行的示意图,让大家可以看到默认的M ...

  7. TODO:Go语言goroutine和channel使用

    TODO:Go语言goroutine和channel使用 goroutine是Go语言中的轻量级线程实现,由Go语言运行时(runtime)管理.使用的时候在函数前面加"go"这个 ...

  8. SQL Server 阻止了对组件“xp_cmdshell”的 过程“sys.xp_cmdshell”的访问,因为此组件已作为此服务器安全配置的一部分而被关闭。

    今天在创建数据库的时候突然发现,xp_cmdshell的存储过程不能用了,网上一搜,发现大部分都是只关闭安全配置,然后就有了下文 代码:具体的看注释,值得一提的是==>reconfigure w ...

  9. 【Win 10 应用开发】Sqlite 数据库的简单用法

    如果老周没记错的话,园子里曾经有朋友写过如何在 UWP 项目中使用 Sqlite数据库的文章.目前我们都是使用第三方封装的库,将来,SDK会加入对 Sqlite 的支持. 尽管目前 UWP-RT 库中 ...

  10. 创建 Monitor 并测试 - 每天5分钟玩转 OpenStack(124)

    前面我们创建了 Pool,VIP 并添加了 Member.今天将创建 Monitor,然后测试 LBaaS 是否能够正常工作. 创建 Monitor LBaaS 可以创建 monitor,用于监控 P ...