蓝桥杯java高职组
标题1: 猜年龄
美国数学家维纳(N.Wiener)智力早熟,11岁就上了大学。他曾在1935~1936年应邀来中
国清华大学讲学。
一次,他参加某个重要会议,年轻的脸孔引人注目。于是有人询问他的年龄,他回答说
:
“我年龄的立方是个4位数。我年龄的4次方是个6位数。这10个数字正好包含了从0到9
这10个数字,每个都恰好出现1次。”
请你推算一下,他当时到底有多年轻。
标题2: 组素数
素数就是不能再进行等分的数。比如:2 3 5 7 11 等。
9 = 3 * 3 说明它可以3等分,因而不是素数。
我们国家在1949年建国。如果只给你 1 9 4 9 这4个数字卡片,可以随意摆放它们的先
后顺序(但卡片不能倒着摆放啊,我们不是在脑筋急转弯!),那么,你能组成多少个4位
的素数呢?
比如:1949,4919 都符合要求。
标题3: 马虎的算式
小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。满足乘法交换律的算式
计为不同的种类,所以答案肯定是个偶数。
标题4: 第39级台阶
小明刚刚看完电影《第39级台阶》,离开电影院的时候,他数了数礼堂前的台阶数,恰
好是39级!
站在台阶前,他突然又想着一个问题:
如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,
也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?
标题5:有理数类
有理数就是可以表示为两个整数的比值的数字。一般情况下,我们用近似的小数表示。
但有些时候,不允许出现误差,必须用两个整数来表示一个有理数。
这时,我们可以建立一个“有理数类”,下面的代码初步实现了这个目标。为了简明,
它只提供了加法和乘法运算。
class Rational
{
private long ra;
private long rb;
private long gcd(long a, long b){
if(b==0) return a;
return gcd(b,a%b);
}
public Rational(long a, long b){
ra = a;
rb = b;
long k = gcd(ra,rb);
if(k>1){ //需要约分
ra /= k;
rb /= k;
}
}
// 加法
public Rational add(Rational x){
return ________________________________________; //填空位置
}
// 乘法
public Rational mul(Rational x){
return new Rational(ra*x.ra, rb*x.rb);
}
public String toString(){
if(rb==1) return "" + ra;
return ra + "/" + rb;
}
}
使用该类的示例:
Rational a = new Rational(1,3);
Rational b = new Rational(1,6);
Rational c = a.add(b);
System.out.println(a + "+" + b + "=" + c);
标题6:逆波兰表达式
正常的表达式称为中缀表达式,运算符在中间,主要是给人阅读的,机器求解并不方便
。
例如:3 + 5 * (2 + 6) - 1
而且,常常需要用括号来改变运算次序。
相反,如果使用逆波兰表达式(前缀表达式)表示,上面的算式则表示为:
- + 3 * 5 + 2 6 1
不再需要括号,机器可以用递归的方法很方便地求解。
为了简便,我们假设:
1. 只有 + - * 三种运算符
2. 每个运算数都是一个小于10的非负整数
下面的程序对一个逆波兰表示串进行求值。
其返回值为一个数组:其中第一元素表示求值结果,第二个元素表示它已解析的字符数
。
static int[] evaluate(String x)
{
if(x.length()==0) return new int[] {0,0};
char c = x.charAt(0);
if(c>='0' && c<='9') return new int[] {c-'0',1};
int[] v1 = evaluate(x.substring(1));
int[] v2 = __________________________________________; //填空位
置
int v = Integer.MAX_VALUE;
if(c=='+') v = v1[0] + v2[0];
if(c=='*') v = v1[0] * v2[0];
if(c=='-') v = v1[0] - v2[0];
return new int[] {v,1+v1[1]+v2[1]};
}
标题7:核桃的数量
小张是软件项目经理,他带领3个开发组。工期紧,今天都在加班呢。为鼓舞士气,小
张打算给每个组发一袋核桃(据传言能补脑)。他的要求是:
1. 各组的核桃数量必须相同
2. 各组内必须能平分核桃(当然是不能打碎的)
3. 尽量提供满足1,2条件的最小数量(节约闹革命嘛)
程序从标准输入读入:
a b c
a,b,c都是正整数,表示每个组正在加班的人数,用空格分开(a,b,c<30)
程序输出:
一个正整数,表示每袋核桃的数量。
例如:
用户输入:
2 4 5
程序输出:
20
再例如:
用户输入:
3 1 1
程序输出:
3
标题8:打印十字图
小明为某机构设计了一个十字型的徽标(并非红十字会啊),如下所示(可参见p1.jpg)
$$$$$$$$$$$$$
$ $
$$$ $$$$$$$$$ $$$
$ $ $ $
$ $$$ $$$$$ $$$ $
$ $ $ $ $ $
$ $ $$$ $ $$$ $ $
$ $ $ $ $ $ $
$ $ $ $$$$$ $ $ $
$ $ $ $ $ $ $
$ $ $$$ $ $$$ $ $
$ $ $ $ $ $
$ $$$ $$$$$ $$$ $
$ $ $ $
$$$ $$$$$$$$$ $$$
$ $
$$$$$$$$$$$$$
对方同时也需要在电脑dos窗口中以字符的形式输出该标志,并能任意控制层数。
为了能准确比对空白的数量,程序要求对行中的空白以句点(.)代替。
输入格式:
一个正整数 n (n<30) 表示要求打印图形的层数
输出:
对应包围层数的该标志。
例如:
用户输入:
1
程序应该输出:
..$$$$$..
..$...$..
$$$.$.$$$
$...$...$
$.$$$$$.$
$...$...$
$$$.$.$$$
..$...$..
..$$$$$..
再例如:
用户输入:
3
程序应该输出:
..$$$$$$$$$$$$$..
..$...........$..
$$$.$$$$$$$$$.$$$
$...$.......$...$
$.$$$.$$$$$.$$$.$
$.$...$...$...$.$
$.$.$$$.$.$$$.$.$
$.$.$...$...$.$.$
$.$.$.$$$$$.$.$.$
$.$.$...$...$.$.$
$.$.$$$.$.$$$.$.$
$.$...$...$...$.$
$.$$$.$$$$$.$$$.$
$...$.......$...$
$$$.$$$$$$$$$.$$$
..$...........$..
..$$$$$$$$$$$$$..
请仔细观察样例,尤其要注意句点的数量和输出位置。
标题9:买不到的数目
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入:
两个正整数,表示每种包装中糖的颗数(都不多于1000)
要求输出:
一个正整数,表示最大不能买到的糖数
不需要考虑无解的情况
例如:
用户输入:
4 7
程序应该输出:
17
再例如:
用户输入:
3 5
程序应该输出:
7
标题10:剪格子
如图p1.jpg所示,3 x 3 的格子中填写了一些整数。
我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是60。
本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0
程序输入输出格式要求:
程序先读入两个整数 m n 用空格分割 (m,n<10)
表示表格的宽度和高度
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000
程序输出:在所有解中,包含左上角的分割区可能包含的最小的格子数目。
例如:
用户输入:
3 3
10 1 52
20 30 1
1 2 3
则程序输出:
3
再例如:
用户输入:
4 3
1 1 1 1
1 30 80 2
1 1 1 100
则程序输出:
10
(参见p2.jpg)
蓝桥杯java高职组的更多相关文章
- 第三届蓝桥杯Java高职组决赛第三题
题目描述: 某少年宫引进了一批机器人小车.可以接受预先输入的指令,按指令行动.小车的基本动作很简单,只有3种:左转(记为L),右转(记为R),向前走若干厘米(直接记数字). 例如,我们可以对小车输入如 ...
- 第三届蓝桥杯Java高职组决赛第一题
题目描述: 看这个算式: ☆☆☆ + ☆☆☆ = ☆☆☆ 如果每个五角星代表 1 ~ 9 的不同的数字. 这个算式有多少种可能的正确填写方法? 173 + 286 = 459 295 + 173 = ...
- 第八届蓝桥杯java b组第六题
标题:最大公共子串 最大公共子串长度问题就是:求两个串的所有子串中能够匹配上的最大长度是多少. 比如:"abcdkkk" 和 "baabcdadabc",可以找 ...
- 49-2015年第6届蓝桥杯Java B组
1.三角形面积 如图1所示.图中的所有小方格面积都是1. 那么,图中的三角形面积应该是多少呢? 请填写三角形的面积.不要填写任何多余内容或说明性文字. image.png 计算方法: 8 * ...
- 46-2016 蓝桥杯 java B 组
1.煤球数目 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第四层10个(排列成三角形), .... 如果一共有100层,共有多少个煤 ...
- 36-2018 蓝桥杯Java B组试题及答案
1:第几天2000年的1月1日,是那一年的第1天.那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数,不要填写任何多余内容. 用excel算,答案125. 2.标题:方格计数 ...
- 2012年第三届蓝桥杯Java本科组省赛试题解析
题目地址:https://wenku.baidu.com/view/326f7b4be518964bcf847c96.html?rec_flag=default => 百度文档 题目及解析 ...
- 2018年蓝桥杯java b组第八题
标题:日志统计 小明维护着一个程序员论坛.现在他收集了一份"点赞"日志,日志共有N行.其中每一行的格式是: ts id 表示在ts时刻编号id的帖子收到一个"赞" ...
- 2018年蓝桥杯java b组第七题
标题:螺旋折线 如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次. 对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度. 例如dis(0, ...
随机推荐
- LinkNode 温度报警器视频(2016-05-15)
文档就不发了,申请的时候说要官方首发,所以半个月后,这里就只上一个视频表表心意.
- Ownership qualifiers of Objective-C: In Details
虽然这里讲的大部分知识以前都看过,但是时不时出现某些点让我如茅塞顿开: 以前经常会忘记一些细节,这篇文章可以更好的理解细节,巩固知识体系. Ownership qualifiers In Object ...
- python2.7_1.13_编写一个SNTP客户端
1.pip install ntplib 2.思路:先创建一个NTPClient实例,然后在这个实例上调用request()方法,把NTP服务器的地址传入方法,向NTP服务器发起一个NTP请求,响应使 ...
- Apache中RewriteCond规则参数介绍(转)
CodeIgniter2.0已经出来有20多天了呢~也就是我一直用的php框架(CI).一直都在研究jquery,倒是把CI给忘到一边去了,呵呵~~今天公司事情不是很多,于是开始熟悉一下CI2.0的一 ...
- 基于QtQuick2.0应用程序运行于XP系统的诸多问题
客户端 使用QtQuick技术开发酷炫的XP客户端经常遇到白屏或者无界面 if Qt is built using ANGLE, its shared libraries and the requir ...
- VC中TRACE()的用法
个人总结:最近看网络编程是碰到了TRACE语句,不知道在哪里输出,查了一晚上资料也没找出来,今天终于在CSDN上找到了,真是个高地方啊,方法如下: 1.在MFC中加入TRACE语句 2.在TOOLS- ...
- android-改进<<仿QQ>>框架源代码
该文章主要改动于CSDN某大神的一篇文章,本人认为这篇文章的面向对象非常透彻,以下分享例如以下可学习的几点: Android应用经典主界面框架之中的一个:仿QQ (使用Fragment, 附源代码) ...
- Android Texting(2)Testing Fundamentals 测试基础篇
Testing Fundamentals The Android testing framework, an integral part of the development environment, ...
- Python类的继承演示样例
class Pet: __name = "" def __init__(self, name): self.__name = name def bark(self): return ...
- ThinkPHP - session 数据库存储驱动
命名格式: Session + 驱动名称 + .class.php 所有的方法要有,但不一定要实现. <?php /** * @category Extend * @package Extend ...