贪心,递推,线段树,$RMQ$。

假设我们记$ans[i]$是以$i$点为起点对答案的贡献,那么答案就是$\sum\limits_{i = 1}^n {ans[i]}$。

$ans[i]$怎么计算呢?

首先,$[i+1,a[i]]$区间上肯定都是$1$(即上图紫线)。

然后在$[i+1,a[i]]$上找到一个$tmp$,使得$tmp$点能够达到的最右端是$[i+1,a[i]]$中最大的,那么$[a[i]+1,a[tmp]]$肯定都是2(即上图绿线)。

然后在$[a[i]+1,a[tmp]]$找一个$tmp2$......依次下去,计算出以$i$为起点对答案的贡献。

但是这样做复杂度太高,需要进行优化。

如果我们知道了$ans[tmp]$,那么就可以$O(1)$知道$ans[i]$,递推一下就可以了。

反过来想,如果我们想知道$ans[i]$,也就是要找到$tmp$,然后从$ans[tmp]$转移过来。

找$tmp$的话可以用线段树,也可以用$RMQ$预处理一下。

$RMQ$:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c=getchar(); x=;
while(!isdigit(c)) c=getchar();
while(isdigit(c)) {x=x*+c-''; c=getchar();}
} const int maxn=;
int a[maxn],n,tmp,dp[maxn][];
LL ans[maxn]; void RMQ_init()
{
for(int i=;i<n;i++) dp[i][]=i;
for(int j=;(<<j)<=n;j++)
for(int i=;i+(<<j)-<n;i++){
if(a[dp[i][j-]]>a[dp[i+(<<(j-))][j-]]) dp[i][j]=dp[i][j-];
else dp[i][j]=dp[i+(<<(j-))][j-];
}
} int RMQ(int L,int R)
{
int k=;
while((<<(k+))<=R-L+) k++;
if(a[dp[L][k]]>a[dp[R-(<<k)+][k]]) return dp[L][k];
return dp[R-(<<k)+][k];
} int main()
{
scanf("%d",&n);
for(int i=;i<n-;i++) scanf("%d",&a[i]),a[i]--;
a[n-]=n-; RMQ_init(); ans[n-]=; LL d=;
for(int i=n-;i>=;i--)
{
tmp=RMQ(i+,a[i]);
ans[i]=ans[tmp]-(a[i]-tmp)+n--a[i]+a[i]-i;
d=d+ans[i];
}
printf("%lld\n",d);
return ;
}

线段树:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c=getchar(); x=;
while(!isdigit(c)) c=getchar();
while(isdigit(c)) {x=x*+c-''; c=getchar();}
} const int maxn=;
int a[maxn],n,s[*maxn],M,tmp;
LL ans[maxn]; void build(int l,int r,int rt)
{
if(l==r) { s[rt]=a[l]; return; }
int m=(l+r)/; build(l,m,*rt); build(m+,r,*rt+);
s[rt]=max(s[*rt],s[*rt+]);
} void f(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R) { M=max(M,s[rt]); return; }
int m=(l+r)/;
if(L<=m) f(L,R,l,m,*rt);
if(R>m) f(L,R,m+,r,*rt+);
} void force(int l,int r,int rt)
{
if(l==r) {tmp=l; return;}
int m=(l+r)/;
if(s[*rt]==M) force(l,m,*rt);
else force(m+,r,*rt+);
} void h(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
if(s[rt]<M) return;
force(l,r,rt); return;
}
int m=(l+r)/;
if(L<=m) h(L,R,l,m,*rt); if(tmp!=-) return;
if(R>m) h(L,R,m+,r,*rt+); if(tmp!=-) return;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n-;i++) scanf("%d",&a[i]); a[n]=n;
build(,n,); ans[n]=; LL d=;
for(int i=n-;i>=;i--)
{
M=tmp=-; f(i+,a[i],,n,); h(i+,a[i],,n,);
ans[i]=ans[tmp]-(a[i]-tmp)+n-a[i]+a[i]-i;
d=d+ans[i];
}
printf("%lld\n",d);
return ;
}

CodeForces 675E Trains and Statistic的更多相关文章

  1. Codeforces 675E Trains and Statistic - 线段树 - 动态规划

    题目传送门 快速的vjudge通道 快速的Codeforces通道 题目大意 有$n$个火车站,第$i$个火车站出售第$i + 1$到第$a_{i}$个火车站的车票,特殊地,第$n$个火车站不出售车票 ...

  2. Codeforces 675E Trains and Statistic(DP + 贪心 + 线段树)

    题目大概说有n(<=10W)个车站,每个车站i卖到车站i+1...a[i]的票,p[i][j]表示从车站i到车站j所需买的最少车票数,求所有的p[i][j](i<j)的和. 好难,不会写. ...

  3. codeforces 675E Trains and Statistic 线段树+贪心统计

    分析:这个题刚看起来无从下手 但是我们可以先简化问题,首先可以固定起点i,求出i+1到n的最小距离 它可以到达的范围是[i+1,a[i]],贪心的想,我们希望换一次车可以到达的距离尽量远 即:找一个k ...

  4. codeforces E. Trains and Statistic(线段树+dp)

    题目链接:http://codeforces.com/contest/675/problem/E 题意:你可以从第 i 个车站到 [i + 1, a[i]] 之间的车站花一张票.p[i][j]表示从 ...

  5. CF 675E Trains and Statistic

    草稿和一些题解而已 因为指针太恶心了 所以query决定还是要试试自己yy一下 #include<cstdio> #include<cstring> #include<i ...

  6. codeforces 675E E. Trains and Statistic(线段树+dp)

    题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  7. Codeforces Round #353 (Div. 2) E. Trains and Statistic dp 贪心

    E. Trains and Statistic 题目连接: http://www.codeforces.com/contest/675/problem/E Description Vasya comm ...

  8. 【34.54%】【codeforces 675E】Trains and Statistic

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. Codeforces Round #353 (Div. 2) E. Trains and Statistic 线段树+dp

    题目链接: http://www.codeforces.com/contest/675/problem/E 题意: 对于第i个站,它与i+1到a[i]的站有路相连,先在求所有站点i到站点j的最短距离之 ...

随机推荐

  1. Hadoop 使用FileSystem API 读取数据

    代码: package com.hadoop; import java.io.IOException; import java.io.InputStream; import java.net.URI; ...

  2. iOS LBS相关: 定位和中国特色的位置偏移纠正

    LBS模块,首先当然是定位,获取自己所在的位置.主要用到的就是CLLocationManager,实例一个,然后调用startUpdatingLocation即可.其中可以指定精度CLLocation ...

  3. 在Netbeans上配置Android开发环境

    在NetBeans下开发Android的所需要的基本条件:NetBeans(包含JDK)+Android SDK+NBAndroid(为Netbeans设计的Android 开发插件) 详情:http ...

  4. UISearchDisplayController UISearchBar

    分组表+本地搜索 UISearchDisplayController  UISearchBar 的使用 效果图 @interface CityListViewController :UIViewCon ...

  5. jQuery跳房子插件hopscotch

    插件描述 跳房子是一个框架,使开发人员可以轻松预览产品并添加到他们的网页 跳房子接受JSON对象作为输入,并提供开发人员来控制渲染巡演显示和管理的游览进度的API. 使用步骤 要使用跳房子框架上手,只 ...

  6. 关于Symfony2+nginx搭建过程总结

    关于Symfony2+nginx搭建过程总结 最近在试着用nginx+symfony搭建公司的网站,由于nginx不支持pathinfo模式,所以必须修改nginx(我使用的是nginx1.5.1)的 ...

  7. Servlet容器模型(四)ServletConfig、ServletContext

    这两天刚刚回顾了一下servlet中的配置对象ServletConfig.上下文对象ServletContext.多线程相关的知识点,做了一下笔记,如下: 一.Servlet配置对象(ServletC ...

  8. 一个简单的string类,读书看报系列(一)

    对于这个类,写过程序的都知道应该含有的方法是 初始化.销毁.拼接.求长度.清除.判断是否为空等.还有一些操作符重载 一.先看初始化: 可以想到应该有默认构造的的.带有字符串的.带有默认字符的.还有一个 ...

  9. ASP.NET控件Repeter的使用

    使用repeter控件,绑定数据源,能够省去在前台页面中拼接繁杂的for.foreach的时间,整个页面看起来也更加直观.常配合<select>标签.<table>标签使用. ...

  10. Java8:使用Lambda表达式增强版Comparator排序

    学习路上的自我记录-------路好长,就问你慌不慌,大声港,不慌.----jstarseven. 实体类: package com.server.model; /** * Created by js ...