LIS(最长的序列)和LCS(最长公共子)总结
LIS(最长递增子序列)和LCS(最长公共子序列)的总结
最长公共子序列(LCS):O(n^2)
两个for循环让两个字符串按位的匹配:i in range(1, len1) j in range(1, len2)
s1[i - 1] == s2[j - 1], dp[i][j] = dp[i - 1][j -1] + 1;
s1[i - 1] != s2[j - 1], dp[i][j] = max (dp[i - 1][j], dp[i][j - 1]);
初始化:dp[i][0] = dp[0][j] = 0;
伪代码:
dp[maxn1][maxn2];
s1[maxn1],s2[maxn2];
p[maxn1][maxn2][2];
//init
for i in range(0, len1):
dp[i][0] = 0;
else:;
for i in range(0, len2):
dp[0][i] = 0;
else:;
for i in range(1, len1):
for j in range(1, len2):
if s1[i] == s2[j]:
dp[i][j] = dp[i - 1][j - 1] + 1;
p[i][j][0] = i - 1;
p[i][j][1] = j - 1;
else:
if dp[i - 1][j] > dp[i][j - 1]:
dp[i][j] = dp[i - 1][j];
p[i][j][0] = i - 1;
p[i][j][1] = j;
else:
dp[i][j] = dp[i][j - 1];
p[i][j][0] = i;
p[i][j][1] = j - 1;
else:;
else:;
return dp[len1][len2];
//path 非递归
function print_path(len1, len2):
if (dp[len1][len2] == 0)
return;
printf_path(p[len1][len2][0], p[len1][len2][1]);
if s1[len1] == s2[len2]:
printf:s1[len1];
end function;
题目:UVA - 531Compromise
UVA - 10066The Twin Towers UVA - 10192Vacation
uva10405 - Longest Common Subsequence
最长递增子序列(LIS):O(n^2)
从左到右的求前i长度的序列的最长递增子序列的长度,状态转移方程:
dp[i] = Max(dp[j] + 1);i in range(1, len); j in range(1, i - 1);
伪代码
s[maxn],dp[maxn];
for i in range(1, len):
dp[i] = 1;
int maxlen = 1;
for i in range(2, len):
for j range(1, i - 1):
if s[i] > s[j]:
dp[i] = Max(dp[i], dp[j] + 1);
else:
maxlen = max(maxlen, dp[i]);
else:;
return maxlen;
//path递归
function print_path(maxlen):
if maxlen == 0:return;
for i in range(1, len):
if dp[i] == maxlen:
print_path(maxlen - 1);
printf:s[i];
end function;
最长递增子序列O(n * logn)
还是从左往右的求前i长度的序列的最长递增子序列长度,可是再确定dp[j]最大值的时候还要用一层循环来查找。这样比較低效.假设把前面的i长度序列出现的最长递增子序列储存起来,那么查找的时候用二分就能够做到O(logn)的复杂度。
用一个LIS数组来储蓄前i序列的最长递增子序列,查找第i个数字的时候,假设num[i] > LIS[top], 那么LIS[++top] = num[i]; dp[i] = top;假设num[i] == LIS[top],那么dp[i] = top; 假设num[i] < LIS[top], 那么二分查找到某个等于或者大于num[i]的最接近的值的位置(第k个),dp[i] = k - 1; LIS[k] = num[i];
伪代码
dp[maxn], LIS[maxn], s[maxn];
top = 0;
LIS[top++] = s[1];
int maxlen = 1;
for i in range(2, len):
if s[i] > LIS[top]:
LIS[++top] = s[i];
dp[i] = top + 1;
else if s[i] == LIS[top]:
dp[i] = top + 1;
else:
k = lower_bound(LIS.begin(), LIS.end(), s[i]) - LIS.beign();
LIS[k] = s[i];
dp[i] = k + 1;
maxlen = max(maxlen, dp[i]);
else:;
return maxlen;
最长公共子序列O(n * logn)
要求串本身不会出现同样的数字或是字母。通过对第一个字符串进行映射(递增的顺序)。然后第二个字符串按照上面的第一个字符串等价映射,这样就把问题从LCS转化成LIS。比如:
串1: 2 4 3 5 6
映射:1 2 3 4 5
串2: 3 2 6 8 10
等价映射:3 1 5 0 0
题目:uva10635Prince and Princess
版权声明:本文博客原创文章,博客,未经同意,不得转载。
LIS(最长的序列)和LCS(最长公共子)总结的更多相关文章
- [LeetCode] Binary Tree Longest Consecutive Sequence II 二叉树最长连续序列之二
Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree. Especia ...
- 最长上升序列 LCS LIS
子序列问题 (一)一个序列中的最长上升子序列(LISLIS) n2做法 直接dp即可: ;i<=n;i++) { dp[i]=;//初始化 ;j<i;j++)//枚举i之前的每一个j ) ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- (LIS)最长上升序列(DP+二分优化)
求一个数列的最长上升序列 动态规划法:O(n^2) //DP int LIS(int a[], int n) { int DP[n]; int Cnt=-1; memset(DP, 0, sizeof ...
- XHXJ's LIS HDU - 4352 最长递增序列&数位dp
代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 // ...
- HDU-4521 小明系列问题——小明序列 间隔限制最长上升子序列
题意:给定一个长度为N的序列,现在要求给出一个最长的序列满足序列中的元素严格上升并且相邻两个数字的下标间隔要严格大于d. 分析: 1.线段树 由于给定的元素的取值范围为0-10^5,因此维护一棵线段树 ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列
问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
随机推荐
- C++中数字与字符串之间的转换(使用CString.Format或者sprintf)
1.字符串数字之间的转换 (1)string --> char * string str("OK"); char * p = str.c_str(); (2)char ...
- WM_PAINT消息在窗口重绘的时候产生,那什么时候窗口会重绘(异步工作方式效率高、灵活性强,还有UpdateWindow和RedrawWindow帮忙)
Q:wm_paint消息在窗口重绘的时候产生,那什么时候窗口会重绘?? A: 严格地说,只有当收到WM_PAINT消息后窗口会重绘 但是引起这个消息的事件有很多, 比如:1.首次创建 2.移动 3.改 ...
- 在TC(Total Commander)中添加启动Cygwin快捷键的方法
在TC(Total Commander)中添加启动Cygwin快捷键的方法 1.在Cygwin的安装目录下,增加文件tc-cygwin.bat(例如C:\cygwin-177\tc-cygwin.ba ...
- U盘只剩下快捷方式
原理: 其实,这个是一种叫1KB病毒(也称之为快捷方式病毒.风暴一号)惹的祸,它是一种恶意的蠕虫病毒,执行以下恶意操作:1.当你的U盘放到一个已经被感染 的主机上时,主机(我的电脑)上的病毒体进程首先 ...
- URAL 1018 (金典树形DP)
连接:1018. Binary Apple Tree Time limit: 1.0 second Memory limit: 64 MB Let's imagine how apple tree l ...
- WEB相关协议
1.数据链路层 2.网络层 3.传输层 4.应用层 ,其中ip是在第二层网络层中,tcp是在第3层传输层中,Internet体系结构最重要的是tcp/ip协议,是实现互联网络连接性和互操作性的关键,它 ...
- 让程序在崩溃时体面的退出之Dump文件
在我的那篇<让程序在崩溃时体面的退出之CallStack>中提供了一个在程序崩溃时得到CallStack的方法.但是要想得到CallStack,必须有pdb文件的支持.但 ...
- SpringMVC之Controller传递JSON数据到页面
在Controller中,组装好JSON格式的数据,然后输入到页面,或者通过ajax请求在页面进行解析,都可以做到. 1.Controller /** * JSON DATA TO PAGE VEIW ...
- OSGi 学习之路(4) - osgi的模块化 java在模块化的局限性
底层代码可见性控制 Java提供了private,public,protected和package private(无修饰符)这四种访问控制级别,不过这仅仅提供了底层的OO数据封装特性.包这个概念确实 ...
- MFC 直线 虚线 折线 圆 椭圆 矩形 弧形
****Dlg.h头文件加入: //为project加入画笔.点变量数组 public: CPen m_pen[5]; CPoint m_point[5]; public: void DrawLine ...