Fibonacci 数列第 N项 O(logN)算法
时间复杂度为O( log n )的方法:
该算法使用矩阵乘法操作,使得算法时间复杂度为 O(logN)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
long long Fibonacci( unsigned n ) { int result[2] = {0, 1}; if (n < 2) return result[n]; long long fibOne = 0; long long fibTwo = 1; long long fibThree ; for (unsigned int i = 2; i <= n; ++ i) { fibThree = fibOne + fibTwo; fibOne = fibTwo ; fibNTwo = fibThree; } return fibThree; } /* 下面介绍一种时间复杂度是O(logn)的方法: 对于斐波那契数列1,1,2,3,5,8,13…….有如下定义: F( n ) = F( n-1 ) + F( n-2 ) F( 1 ) = 1 F( 2 ) = 1 矩阵形式: [ F( n+1 ) , F( n ) ] = [ F( n ) , F( n-1 ) ] * Q 其中 [ F( n+1 ) , F( n ) ]为行向量,Q = { [ 1, 1 ]; [ 1, 0 ] }为矩阵 则 [ F( n+1 ) , F( n ) ]=[ 1 , 0 ] * Qn , */ struct Matrix { long long m_00, m_01, m_10, m_11; Matrix ( long long m00 = 0, long long m01 = 0, long long m10 = 0, long long m11 = 0 ) :m_00( m00 ), m_01( m01 ), m_10( m10 ), m_11( m11 ) { } }; Matrix MatrixMultiply ( const Matrix & m1, const Matrix & m2 ) { long long m00 = m1.m_00 * m2.m_00 + m1.m_01 * m2.m_10; long long m01 = m1.m_00 * m2.m_01 + m1.m_01 * m2.m_11; long long m10 = m1.m_10 * m2.m_00 + m1.m_11 * m2.m_10 long long m11 = m1.m_10 * m2.m_01 + m1.m_11 * m2.m_11; return Matrix ( m00, m01, m10, m11 ); } Matrix MatrixPower( unsigned int n ) { assert (n > 0); Matrix m; if ( n == 1) { m = Matrix(1, 1, 1, 0); } else if (n % 2 == 0) { m = MatrixPower( n / 2 ); m = MatrixMultiply( matrix, matrix ); } else if ( n % 2 == 1 ) { m = MatrixPower( (n - 1) / 2 ); m = MatrixMultiply( m, m ); m = MatrixMultiply( m, Matrix( 1, 1, 1, 0 ) ); } return m; } long long Fibonacci( unsigned int n ) { int result[2] = { 0, 1 }; if ( n < 2 ) return result[ n ]; Matrix Q = MatrixPower( n - 1 ); //注意:按定义式应该用[ 1, 0 ]*Q, 或者等价于{ [ 1 , 0 ]; [ 0, 0 ] }*Q, 但是因为显然结果相同,所以略去这一步。return Q.m_00; } |
牛客网答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
class Solution { public : int Fibonacci( int n) { int result[2]={0,1}; if (n<2) return result[n]; Matrix m; return m.Power(n-1).a00; } class Matrix{ public : long int a00; long int a01; long int a10; long int a11; Matrix ( long int a, long int b, long int c, long int d){ a00=a; a01=b; a10=c; a11=d; } Matrix (){ a00=1;a01=1;a10=1;a11=0; } Matrix operator * (Matrix & m2){ long int b00 = a00 * m2.a00 + a01 * m2.a10; long int b01 = a00 * m2.a01 + a01 * m2.a11; long int b10 = a10 * m2.a00 + a11 * m2.a10; long int b11 = a10 * m2.a01 + a11 * m2.a11; return Matrix(b00,b01,b10,b11); } Matrix Power( unsigned int n ) { Matrix m; if ( n == 1) { m = Matrix(1, 1, 1, 0); } else if (n % 2 == 0) { m = Power( n / 2 ); m = m*m; } else if ( n % 2 == 1 ) { m = Power( (n - 1) / 2 ); m = m*m; Matrix tmp; m = m*tmp ; } return m; } }; }; |
Fibonacci 数列第 N项 O(logN)算法的更多相关文章
- Fibonacci数列前n项值的输出(运用递归算法)
1.斐波那契数列: 又称黄金分割数列,指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 在数学上,斐波纳契数列以如下被以递归的方法 ...
- Problem D: 调用函数,输出Fibonacci数列的m项至n项
#include<stdio.h> int fib(int n)//定义FIbonacci函数 { int s,i; ||n==) { s=; } else { int s1,s2; s1 ...
- c语言经典算法---计算Fibonacci数列
算法是一个程序和软件的灵魂,作为一名优秀的程序员,只有对一些基础的算法有着全面的掌握,才会在设计程序和编写代码的过程中显得得心应手.下面我就分享一个C语言中比较基础却极为重要的一个算法----计算Fi ...
- 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]
作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:定义Fibonacci数列如下: / 0 n=0 f(n)= ...
- 【编程题目】题目:定义 Fibonacci 数列 输入 n,用最快的方法求该数列的第 n 项。
第 19 题(数组.递归):题目:定义 Fibonacci 数列如下:/ 0 n=0f(n)= 1 n=1/ f(n-1)+f(n-2) n=2输入 n,用最快的方法求该数列的第 n 项. 思路:递归 ...
- Fibonacci 数列O(logn)解法
传统解法 提到斐波那契数列(Fibonacci Sequence),首先想到的是经典的动规(DP)算法. 时间复杂度O(n),这里空间复杂度可以优化到O(1).代码如下: int fib_n(int ...
- wikioi 1973 Fibonacci数列【输出第N项的值】
/*===================================== 1978 Fibonacci数列 3 题目描述 Description 斐波纳契数列是这样的数列: f1 = 1 f2 ...
- 递归函数练习:输出菲波拉契(Fibonacci)数列的前N项数据
/*====================================================================== 著名的菲波拉契(Fibonacci)数列,其第一项为0 ...
- 《面试题精选》15.O(logn)求Fibonacci数列
题目:定义Fibonacci数列例如以下: / 0 n=0 f(n)= 1 n=1 ...
随机推荐
- ensp实战之防火墙安全转发策略
本次实验用防火墙是USG6000V,拓扑图如下: 步骤一: 按上面配好PC1.2.3以及WWW服务器的IP地址.子网掩码以及网关: 步骤二: 进入防火墙的CLI命令模式下,按一下命令配置: 配置各个接 ...
- grunt学习随笔
1 grunt 安装 全局安装 npm install -g grunt-cli 2 配置好package.json 和 Gruntfile 文件,这两个文件必须位于项目根目录下. 2.1packa ...
- Python处理Excel(转载)
1. Python 操作 Excel 的函数库 我主要尝试了 3 种读写 Excel 的方法: 1> xlrd, xlwt, xlutils: 这三个库的好处是不需要其它支持,在任何操作系统上都 ...
- POJ 2975 Nim(普通nim)
题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...
- 大D实例化model-->调用自定义类方法,大M调用原声model方法
class ContactsModel extends Model{ public function addxxx(){ } } $conmodel = D('contacts','Model'); ...
- SSH 两个表全套增删改(运动员住宿管理)
0.创建如下oracle的命令 create table HOTALINFO ( HOTALID ) not null, HOTALNAME ) not null, HOTALADDRESS ) no ...
- Maxmum subsequence sum problem
We have a lot of ways to solve the maximum subsequence sum problem, but different ways take differen ...
- 洛谷-生活大爆炸版石头剪刀布-NOIP2014提高组复赛
题目描述 Description 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头.如果两个人出拳一样,则不分胜负.在<生活大爆炸>第二季第8 集中出现了一种石头剪刀布的升级版 ...
- 【卷一】正则四 |> 练习
参考:<Python核心编程(3rd)>—P39 1-1 识别后续的字符串: "bat", "bit", "but" &quo ...
- Telnet服务器和域名系统的端口号 Mac OS X
找到Telnet服务器和域名系统的端口号: lapommedeMacBook-Pro:~ lapomme$ grep telnet /etc/services telnet /udp # Telnet ...