网络流。

原点到偶数连边,容量为2,

奇数到汇点连边,容量为2,

偶数到与之能凑成素数的奇数连边,容量为1

如果奇数个数不等于偶数个数,输出不可能

如果原点到偶数的边不满流,输出不可能

剩下的情况有解:因为一个偶数点选了两个奇数点,一个奇数点被两个偶数点选择,一定能构造出环。

#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std; const int maxn = + ;
const int INF = 0x7FFFFFFF;
struct Edge
{
int from, to, cap, flow;
Edge(int u, int v, int c, int f) :from(u), to(v), cap(c), flow(f){}
};
vector<Edge>edges;
vector<int>G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
int n, m, s, t;
int num[maxn]; vector<int>g[maxn];
vector<int> ans[maxn];
bool f[maxn];
int block; void init()
{
for (int i = ; i < maxn; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, ));
edges.push_back(Edge(to, from, , ));
int w = edges.size();
G[from].push_back(w - );
G[to].push_back(w - );
}
bool BFS()
{
memset(vis, , sizeof(vis));
queue<int>Q;
Q.push(s);
d[s] = ;
vis[s] = ;
while (!Q.empty())
{
int x = Q.front();
Q.pop();
for (int i = ; i<G[x].size(); i++)
{
Edge e = edges[G[x][i]];
if (!vis[e.to] && e.cap>e.flow)
{
vis[e.to] = ;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a)
{
if (x == t || a == )
return a;
int flow = , f;
for (int &i = cur[x]; i<G[x].size(); i++)
{
Edge e = edges[G[x][i]];
if (d[x]+ == d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>)
{
edges[G[x][i]].flow+=f;
edges[G[x][i] ^ ].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
if(!flow) d[x] = -;
return flow;
}
int dinic(int s, int t)
{
int flow = ;
while (BFS())
{
memset(cur, , sizeof(cur));
flow += DFS(s, INF);
}
return flow;
} bool prime(int x)
{
for(int i=;i*i<=x;i++)
if(x%i==) return ;
return ;
} void Find(int now)
{
f[now]=;
ans[block].push_back(now);
for(int i=;i<g[now].size();i++)
{
if(f[g[now][i]]) continue;
Find(g[now][i]);
}
} int main()
{
while(~scanf("%d",&n))
{
for(int i=;i<=n;i++) scanf("%d",&num[i]);
init();
s=;t=n+; int e1=,e2=;
int flag=;
for(int i=;i<=n;i++)
{
if(num[i]%==) { e1++; AddEdge(s,i,); }
else { e2++; AddEdge(i,t,); }
}
if(e1!=e2) flag=;
else
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(num[i]%==&&num[j]%==&&prime(num[i]+num[j]))
AddEdge(i,j,);
int Flow=dinic(s,t);
if(Flow!=*e1) flag=;
}
if(flag==) printf("Impossible\n");
else
{
block=; memset(f,,sizeof f);
for(int i=;i<maxn;i++) { g[i].clear(); ans[i].clear(); }
for(int i=;i<edges.size();i=i+)
{
if(edges[i].flow==)
{
int u=edges[i].from;
int v=edges[i].to;
g[u].push_back(v);
g[v].push_back(u);
}
} for(int i=;i<=n;i++)
{
if(f[i]) continue;
Find(i); block++;
} printf("%d\n",block);
for(int i=;i<block;i++)
{
printf("%d ",ans[i].size());
for(int j=;j<ans[i].size();j++)
printf("%d ",ans[i][j]);
printf("\n");
}
}
}
return ;
}

CodeForces 510E Fox And Dinner的更多相关文章

  1. codeforces 510E. Fox And Dinner 网络流

    题目链接 给出n个人, 以及每个人的值, 要求他们坐在一些桌子上面, 每个桌子如果有人坐, 就必须做3个人以上. 并且相邻的两个人的值加起来必须是素数.每个人的值都>=2. 由大于等于2这个条件 ...

  2. Codeforces Round #290 (Div. 2) E. Fox And Dinner 网络流建模

    E. Fox And Dinner time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. CF510E. Fox And Dinner

    CF510E. Fox And Dinner https://codeforces.com/contest/510 分析: 由于\(a_i>2\), 相邻两个数一定一奇一偶,按奇偶建立二分图. ...

  4. 网络流 I - Fox And Dinner CodeForces - 510E

    Fox Ciel is participating in a party in Prime Kingdom. There are n foxes there (include Fox Ciel). T ...

  5. Fox And Dinner CodeForces - 510E (最大流)

    大意: n只狐狸, 要求分成若干个环, 每个环的狐狸不少于三只, 相邻狐狸年龄和为素数. 狐狸年龄都>=2, 那么素数一定为奇数, 相邻必须是一奇一偶, 也就是一个二分图, 源点向奇数点连容量为 ...

  6. 网络流(最大流)CodeForces 512C:Fox And Dinner

    Fox Ciel is participating in a party in Prime Kingdom. There are n foxes there (include Fox Ciel). T ...

  7. Codeforces 510 E. Fox And Dinner

    题目链接:http://codeforces.com/problemset/problem/510/E 乍一看和那啥魔术球问题有点神似啊/XD 其实是不一样的. 解决这道问题的关键在于发现若是相邻的两 ...

  8. CodeForces Round #290 Fox And Dinner

    而是Div2的最后一题,当时打比赛的时候还不会最大流.自己能够把它写出来然后1A还是很开心的. 题意: 有n个不小于2的整数,现在要把他们分成若干个圈.在每个圈中,数字的个数不少于3个,而且相邻的两个 ...

  9. 【Codeforces】512C Fox and Dinner

    [解析]欧拉筛法,奇偶分析.建二分图,网络流 [Analysis] http://blog.csdn.net/qq574857122/article/details/43453087. 所谓的连通块就 ...

随机推荐

  1. -Swift.h not find

    亲测成功. 随便新建一个swift文件,xcode问是否生成xxx-Bridging-Header.h文件,点YES.再编译,问题解决. By default, the generated heade ...

  2. PHP数学函数试题

    1.求绝对值的函数是什么? 2.在任意进制之间转换数字的函数是什么? 3.二进制转换为十进制,十进制转换为二进制,十六进制转换为十进制,十进制转换为十六进制,八进制转换为十进制,十进制转换为八进制的函 ...

  3. Windows平台查看端口占用情况

    1.查看所有的端口占用情况 netstat -ano 协议    本地地址                     外部地址               状态                   PI ...

  4. List<T> 求差集

    List<, , , , , }; List<, , , , , }; List<int> c = b.Except(a).ToList(); foreach (int i i ...

  5. seo优化 标点符号

    一.顿号“.” 顿号是一个只有在中文中使用的标点符号,这在英文中没有.毕竟该不该在标题中使用顿号呢,建议大家仍是不要使用,或者说在标题中就不要泛起中文的符号最好.不外,顿号可以使用在Descripti ...

  6. jsp提交表单问题

    以form形式提交的话 String usernameInForm = hreq.getParameter("username");String passwordInForm = ...

  7. Hibernate 系列教程16-二级缓存

    pom.xml <dependency> <groupId>org.hibernate</groupId> <artifactId>hibernate- ...

  8. 解决编译时出现的警告:format string is not a string literal (potentially insecure)

    NSLog([NSString stringWithFormat:@"%@/%@B.jpg", createDir, uuid]);//这是我的写法 应该写成 NSString * ...

  9. php Memcached

    PHP 连接 Memcached 服务 在前面章节中我们已经介绍了如何安装 Memcached 服务,接下来我们为大家介绍 PHP 如何使用 Memcached 服务. PHP Memcache 扩展 ...

  10. 未找到或无法访问服务器 请验证实例名称是否正确并且SQL Server 已配置为允许远程连接

    无法连接到sql server 2008服务器 报下错误 其他信息    在与SQL Server建立连接时出现与网络相关的或特定于实例的错误 未找到或无法访问服务器请验证实例名称是否正确并且SQL ...