An easy problem

Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1697    Accepted Submission(s): 760

Problem Description

One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
 

Input

The first line is an integer T(1≤T≤10), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

It's guaranteed that in type 2 operation, there won't be two same n.

 

Output

For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
 

Sample Input

1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
 

Sample Output

Case #1:
2
1
2
20
10
1
6
42
504
84
 

Source

 
既然说是简单题,那就不用想的太复杂,暴力的做法也能过
 //2016.9.12
#include <iostream>
#include <cstdio>
#include <cstring>
#define N 100005 using namespace std; int nu[N], book[N]; int main()
{
long long ans;
int T, kase = , q, mod, op;
scanf("%d", &T);
while(T--)
{
ans = ;
memset(book, true, sizeof(book));
printf("Case #%d:\n", ++kase);
scanf("%d%d", &q, &mod);
for(int i = ; i <= q; i++)
{
scanf("%d%d", &op, &nu[i]);
if(op == )
{
ans *= nu[i];
ans %= mod;
}
else
{
book[nu[i]] = false;
book[i] = false;
ans = ;
for(int j = ; j < i; j++)
{
if(book[j])ans = (ans*nu[j])%mod;
}
}
printf("%lld\n", ans);
}
} return ;
}

HDU5475的更多相关文章

  1. hdu-5475 An easy problem---线段树+取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5475 题目大意: 给X赋初值1,然后给Q个操作,每个操作对应一个整数M: 如果操作是1则将X乘以对应 ...

  2. HDU5475(线段树)

    An easy problem Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)

    Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...

  4. hdu5475(线段树单点修改,统计区间乘积)

    题目意思: 给定a*b*c*d*e*f*....,可以在某一步去掉前面的一个因子,每次回答乘积. #include <cstdio> #include <cstring> #i ...

随机推荐

  1. javascript的 replace() 方法的使用讲解

    String.prototype.replace() The replace() method returns a new string with some or all matches of a p ...

  2. BP神经网络的Java实现

    http://fantasticinblur.iteye.com/blog/1465497

  3. hibernate--ID生成策略--annotation

    annotation: @GeneratedValue a) 自定义ID b)auto: 对mysql默认使用auto_increment, 对oracle使用hibernate_sequence c ...

  4. 彻底领悟javascript中的this

    this是Javascript语言的一个关键字. 它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用.比如, function test() { this.x = 1; } 随着函数使用场合 ...

  5. Spring自学教程-声明式事务处理(六)

    Spring事务处理分两种: 一.编程式事务:在程序中控制事务开始,执行和提交: 1.1 使用TransactionTemplate, 使用回调函数执行事务,不需要显示开始事务,不需要显示提交事务,但 ...

  6. iOS友盟三方登陆

    Umeng三方登陆个人总结 Demo地址:https://github.com/haozheMa/UmengThirdLoginDemo这里仅以微信.QQ和新浪微博作为例子首先根据官方文档 导入以下依 ...

  7. OSD的主要实现方法和类型(转)

    源:OSD的主要实现方法和类型 目前有两种主要的OSD实现方法:外部OSD发生器与视频处理器间的叠加合成;视频处理器内部 支持OSD,直接在视频缓存内部叠加OSD信息. 外部OSD发生器与视频处理器间 ...

  8. NPOI使用Datatable导出到Excel

    首先要引用dll 下载地址:http://pan.baidu.com/s/1dFr2m 引入命名空间: using NPOI.HSSF.UserModel;using NPOI.SS.UserMode ...

  9. iOS调用相机,相册,上传头像

    一.新建工程 二.拖控件,创建映射 三.在.h中加入delegate @interface ViewController : UIViewController 复制代码 四.实现按钮事件 -(IBAc ...

  10. NLPIR中文分词器的使用

    一.普通java项目 (1)添加项目jar包 File -> Project Structure     Libarries 添加jar包jna-4.0.0.jar (2)将Data文件夹复制到 ...