Lab 11 Process Control

Sequence 1: Job Control

1. [student@stationX ~]$ su -

2. Begin some jobs in the background:
[root@stationX ~]# tail -n0 -f /var/log/messages &
[root@stationX ~]# updatedb &

3. [root@stationX ~]# service syslog restart

4. [root@stationX ~]# jobs

5. [root@stationX ~]# kill %1
[root@stationX ~]# jobs

6. Next, start an instance of vim
[root@stationX ~]# vim

7. While in vim, press Ctrl-z to suspend the current program.

8. Run jobs again and note vim's job ID.

9. [root@stationX ~]# fg 3

Sequence 2: Conditional Execution

1. ping -c1 -w2 $TARGET &> /dev/null

2. vi ~/bin/reach.sh
#!/bin/bash
TARGET=$1
ping -c1 -w2 $TARGET &> /dev/null

3. [student@stationX ~]$ chmod a+x ~/bin/reach.sh

4. [student@stationX ~]$ reach.sh server1; echo $?
0
[student@stationX ~]$ reach.sh station100; echo $?
1

5. Now use the conditional operators && and || to report success or failure based on ping's
exit value.
#!/bin/bash
TARGET=$1
ping -c1 -w2 $TARGET &> /dev/null &&
echo "$TARGET is UP" ||
echo "$TARGET is DOWN"

6. [student@stationX ~]$ reach.sh server1; echo $?
server1 is UP
0
[student@stationX ~]$ reach.sh station100; echo $?
station100 is DOWN
0

7. The script returns 0 for both tests because the last command run is now echo, not ping.
Since echo does not fail, it returns success.

8. Modify the script again
#!/bin/bash
TARGET=$1
ping -c1 -w2 $TARGET &> /dev/null
RESULT=$?
if [ $RESULT -ne 0 ]
then
echo "$TARGET is DOWN"
else
echo "$TARGET is UP"
fi
exit $RESULT

9. Test the script.
[student@stationX ~]$ reach.sh server1; echo $?
server1 is UP
0
[student@stationX ~]$ reach.sh station100; echo $?
station100 is DOWN
1

10. [student@stationX ~]$ sudo mv ~/bin/reach.sh /usr/local/bin/

Sequence 3: Scheduling One-Time Jobs

Scenario: In this sequence you will schedule a job for one-time execution at a specified
time using the tool you developed in the previous sequence.

Instructions:

1. Start in a shell, either on a virtual console or a graphical shell, such as gnome-terminal. You should be signed in as student.

2. Schedule your reach.sh tool to check all stations five minutes from now:
[student@stationX ~]$ at now+5min
at> for x in $(seq 1 40); do
at> reach.sh station$x
at> done
at> Ctrl-d
job 7 at 2007-01-23 08:40

Note: Since your script only emits output when there is a problem, you do not have to worry
about redirecting STDOUT or STDERR in regular usage. Your job will only notify you of
unreachable stations!

3. The system responded with a job number, but list your scheduled jobs to see any others that
you may have created (or that root may have created for you!):

[student@stationX ~]$ at -l
job 7 at 2007-01-23 08:40 a student

4. For detailed information, cat the job:

[student@stationX ~]$ at -c 7

Read the output, observing that each at job stores the environment for the user that created
the job. The job's command is listed near the bottom of the output.

5. Optionally, watch the job list until your job executes.

[student@stationX ~]$ watch -n1 'at -l'

6. Check your mail after the job executes to review its output.

[student@stationX ~]$ mutt

Sequence 4: Finding Processes

Scenario: In this sequence you will find the process on your system that is using the most
CPU time. Finding it will require the use of ps and tail.

Instructions:

1. Start in a shell, either on a virtual console or a graphical shell, such as gnome-terminal. You should be signed in as student.

2. Review the ps man page to find the standard format specifier for displaying the PID,
program name, and percent CPU utilization.

man ps

Within the man page, search for the -o option:

/-o
Press n until you find the section on the -o option. Instead of listing the available columns,
it refers you to the STANDARD FORMAT SPECIFIERS section of the man page, so try
searching for that at this point:

/STANDARD FORMAT SPECIFIERS

Find the list of columns to determine which codes are appropriate.

3. List all processes on your system, limiting output to PID, program name, and percent CPU
utilization.

ps axo pid,comm,pcpu

You should see a long list of processes scroll by.

4. Now open up the man page for ps to determine if it has the ability to sort output.

man ps
/sort

5. Once you find the correct sort option, add it to your previous command:

ps axo pid,comm,pcpu --sort=pcpu

6. The output looks right, so now pipe it through another command to restrict output to a
single process:

ps axo pid,comm,pcpu --sort=pcpu | tail -n1

Sequence 5: Recurring Jobs

Scenario: In this sequence you will take the command you developed in the previous sequence and adapt it for use in a recurring job. You would like the output mailed to student's email complete with column headings.

Instructions:

1. Observing that ps automatically outputs column headings, review the man page to
determine how to reverse the sort order, such that the job with the most CPU time is at the
top of the ouput, along with the column headings.

Add the reverse sort indicator (-) in front of the sort column:

ps axo pid,comm,pcpu --sort=-pcpu

2. Now restrict output to the top two lines:

ps axo pid,comm,pcpu --sort=-pcpu | head -n2

The output is now suitable for job scheduling.

3. Review the man page for crontab to check the field order:

man crontab

4. Oops! There are two man pages for crontab, so open up the one in section 5, which deals
with configuration files:

man 5 crontab

5. Use information in the man page to determine how would you write a crontab entry that
should run every five minutes?

*/5 * * * *

6. Use your answer to the previous question to add a crontab entry that runs the ps command
from earlier every five minutes.

You can do this either by running crontab -e and using a text editor or by piping directly to
crontab like this:

echo '*/5 * * * * ps axo pid,comm,pcpu --sort=-pcpu | head -n2' | crontab

7. Once you have added the job, list your crontab to confirm:

crontab -l

8. Now add lines to run your reach.sh command on server1 and station100 every two minutes.
Because /usr/local/bin is not in the PATH used by cron, you will need to use an
absolute path to the script.

Your crontab should now look like this:

*/5 * * * * ps axo pid,comm,pcpu --sort=-pcpu | head -n2
*/2 * * * * /usr/local/bin/reach.sh server1
*/2 * * * * /usr/local/bin/reach.sh station100

9. Once a few minutes have passed, check your mail with the mutt command to see the output
of your jobs. See the instructions at the beginning of this lab if you are unfamiliar with
mutt.

Some observations about what you should see:

• You did not receive any mail regarding the reachability of server1; your script correctly
avoids output on successful completion

• You received at least one message regarding the failure to reach station100

10. For cleanup, remove your crontab:

crontab -r; crontab -l

RH033读书笔记(10)-Lab 11 Process Control的更多相关文章

  1. RH033读书笔记(9)-Lab 10 Understanding the Configuration Tools

    Lab 10 Understanding the Configuration Tools Sequence 1: Configuring the Network with system-config- ...

  2. RH033读书笔记(15)-Lab 16 The Linux Filesystem

    Lab 16 The Linux Filesystem Goal: Develop a better understanding of Linux filesystem essentials incl ...

  3. RH033读书笔记(16)-Lab 17 Installation and Administration Tools

    Lab 17 Installation and Administration Tools Goal: Become familiar with system configuration tools a ...

  4. RH033读书笔记(5)-Lab 6 Exploring the Bash Shell

    Lab 6 Exploring the Bash Shell Sequence 1: Directory and file organization 1. Log in as user student ...

  5. RH033读书笔记(3)-Lab 4 Browsing the Filesystem

    Lab 4 Browsing the Filesystem Sequence 1: Directory and File Organization 1. Log in as user student ...

  6. RH033读书笔记(7)-Lab 8 Introduction to String Processing

    Lab 8 Introduction to String Processing Sequence 1: Exercises in string processing 1. Other than the ...

  7. RH033读书笔记(8)-Lab 9 Using vim

    Lab 9 Using vim Sequence 1: Navigating with vim 1. Log in as user student 2. [student@stationX ~]$ c ...

  8. RH033读书笔记(13)-Lab 14 Network Clients

    Goal: Practice using a variety of tools to transfer files between your system and a remote system. S ...

  9. RH033读书笔记(14)-Lab 15 Switching Users and Setting a Umask

    Lab 15 Switching Users and Setting a Umask Goal: Become familiar with the use of several essential c ...

随机推荐

  1. Window8.1 64位无法使用Debug命令的解决方法[附牛人代码]

    偶然看到网上一篇文章,讲的是世界黑客编程大赛第一名的一个很酷的程序,大小仅有4KB,使用debug命令执行. 悲催的是win8.1的debug命令不能使用. 错误例如以下: 解决方法例如以下: 1. ...

  2. grails的controller和action那点事---远程调试groovy代码

    最近由于项目需要,用到了grails,这玩意确实好用,生产率高有类型python的速度与简洁.仅第一印象,用的还不深入,说的不对请轻拍. 遇到的几个问题: 1. groovy远程调试 玩Java的应该 ...

  3. Eclipse上运行Python,使用PyDev

    转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-ecl-pydev/index.html 级别: 初级 郑 伟芳 (zhengwf@c ...

  4. C#-gdi画图,双缓冲画图,Paint事件的触发---ShinePans

    在使用gdi技术画图时,有时会发现图形线条不够流畅,或者在改变窗口大小时会闪烁不断的现象.(Use DoubleBuffer to solve it!)                         ...

  5. 2014百度之星第三题Xor Sum(字典树+异或运算)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  6. .net读取异步Post的内容

    //读取微信Post过来的XML内容                 byte[] input = HttpContext.Current.Request.BinaryRead(HttpContext ...

  7. Effective C++规定45 附加代码

    这部分是额外的代码的博客.键45条款想法已经实现. #include<iostream> using namespace std; template<typename T> c ...

  8. hibernate操作数据库总结

    这篇文章用于总结hibernate操作数据库的各种方法 一.query方式 1.hibernate使用原生态的sql语句执行数据库查询 有些时候有些开发人员总觉得用hql语句不踏实,程序出现了错误,就 ...

  9. Node.js : 我只需要一个店小二

    刚刚开始接触Node.js时, google了很多文章,但发现大部分都是泛泛的介绍安装,配置,以及介绍几个小例子 有一种雾里观花的感觉,所以非常困惑,不知道Node.js到底解决了什么问题,它的优势到 ...

  10. 找出二叉树中和为n的路径

    题目描述: 输入一个整数和一棵二元树.从树的根结点开始往下访问一直到叶结点所经过的所有结点形成一条路径.打印出和 与输入整数相等的所有路径. 二叉树中的路径 从二叉树的根节点出发,至二叉树的叶子节点的 ...