HNOI 2014 米特运输(图论)
HNOI 2014 米特运输
题目大意
给一棵树,每个点有自己的权值,要求更改一些点的权值,使得整棵树满足两个条件:
- 同一个父亲的所有子节点权值相同
- 父节点的取值为所有子节点的和
答案输出最少要更改的点的数量
那么可以联想到,但凡有一个节点的权值确定了,整棵树的权值就都确定下来了
那么很容易想到通过确定一个点的权值,去dfs其他点的权值,然后判断有多少相等,然后拿n减去不用更改的,取其中的最小值就是答案
没有想到的一个点,取对数减小时间复杂度
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
inline int read(){
int x = 0, w = 1;
char ch = getchar();
for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') w = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return x * w;
}
const int maxn = 100010;
struct node {
int to, nxt;
}edge[maxn << 1];
int tot, head[maxn];
inline void add(int x, int y){
edge[++tot].to = y;
edge[tot].nxt = head[x];
head[x] = tot;
}
int val[maxn];
bool vis[maxn];
int w[maxn], in[maxn];
inline void dfs(int u){
val[u] = 1;
for(int i = head[u]; i; i = edge[i].nxt){
if(!val[vis[i]]) w[vis[i]] = w[u] + log(in[u]), dfs(vis[i]);
}
}
int a[maxn];
int main(){
int n = read();
for(int i = 1; i <= n; i++) a[i] = read();
for(int i = 2; i <= n; i++){
int u = read(), v = read();
add(u, v);
add(v, u);
in[u]++, in[v]++;
in[i]--;
}
w[1] = log(1);
dfs(1);
for(int i = 1; i <= n; i++)
w[i] += log(a[i]);
sort(w + 1, w + 1 + n);
int cnt = 1;
int ans = 0;
for(int i = 2; i <= n; i++){
if(w[i] - w[i - 1] < 1e7) cnt++;
else ans = max(ans, cnt), cnt = 1;
}
cout << n - max(ans, cnt) << endl;
return 0;
}
HNOI 2014 米特运输(图论)的更多相关文章
- [HNOI 2014]米特运输
Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储 存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市 ...
- 【BZOJ-3573】米特运输 树形DP
3573: [Hnoi2014]米特运输 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1023 Solved: 604[Submit][Statu ...
- BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash
BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...
- 洛谷 P3237 [HNOI2014]米特运输 解题报告
P3237 [HNOI2014]米特运输 题目描述 米特是\(D\)星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. \(D\)星上有 ...
- HNOI 2014
D1T1:画框 frame 题意:给你两个n阶正整数方阵,请你求最大的\( \sum_{i = 1}^{n} A_{i, p_i}\times \sum_{i = 1}^{n} B_{i, p_i} ...
- bzoj 3573: [Hnoi2014]米特运输
3573: [Hnoi2014]米特运输 Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星 ...
- 「HNOI 2014」米特运输
题目链接 戳我 \(Describe\) 谁出的题目啊?这么长的题面,看完就滚粗了.强烈谴责 给一棵树,每个点有一个权值,要求修改一些权值,使: 一个点的权值必须是其所有儿子的权值之和 一个点的儿子权 ...
- 图论(KM算法,脑洞题):HNOI 2014 画框(frame)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABPoAAANFCAIAAABtIwXVAAAgAElEQVR4nOydeVxTV/r/n9ertaJEC4
- 3573: [Hnoi2014]米特运输 - BZOJ
Description米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N,1号 ...
随机推荐
- XStrea学习手册
一.前言 1.XStream官网 http://x-stream.github.io 2.XStream是什么 XStream是一个简单的基于Java的类库,用来将Java对象序列化成XML(J ...
- maven配置阿里云仓库进行下载
maven阿里云仓库下载 为了解决maven在下载jar包的时候,速度比较慢的问题,可以配置阿里云仓库配置方式的进行下载,首先找到您安装的maven路径. 在conf文件夹下面有个settings.x ...
- jmeter 性能测试入门手册分享
深思熟虑之下,决定把这份性能测试入门手册分享给大家 最初整理这份教程的是因为自己在学习性能测试的过程中踩过了很多的坑,遇到了 数不清的问题,于是就想着将这些解决的问题全都归拢在一个文档里,方便自己查阅 ...
- TensorFlow开发者证书 中文手册
经过一个月的准备,终于通过了TensorFlow的开发者认证,由于官方的中文文档较少,为了方便大家了解这个考试,同时分享自己的备考经验,让大家少踩坑,我整理并制作了这个中文手册,请大家多多指正,有任何 ...
- 使用FFT进行频谱分析
import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft fs=100 #采样频率 N=128 ...
- TensorFlow从0到1之TensorFlow实现反向传播算法(21)
反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...
- C++核心编程
C++核心编程 本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓. 1 内存分区模型 C++程序在执行时,将内存大方向划分为4个区域 代码区:存放函数体的二进制代码,由操作系统 ...
- Docker拉取镜像加速
关于Docker拉取镜像加速 打开桌面 docker 小图标 选中框框 根据下图 添加国内的加速源即可 Docker加速源 #网易 http://hub-mirror.c.163.com #Docke ...
- Linux下搭建mysql
[准备环境] Linux centos7 [mysql安装步骤] 1.首先确定centos版本 cat /etc/redhat-release 2.yum安装 yum -y install mar ...
- C++_继承
C++支持单继承和多继承,并提供3类继承:public.private及protected.在public继承中,每个派生类对象都是基类对象,反之基类对象却不是派生类对象.派生类成员无法直接访问基本的 ...