CodeForces833 B. The Bakery 线段树维护dp
题目链接:https://vjudge.net/problem/CodeForces-833B
题意:
给长度为n的数组a,和一个整数k
要求把数组分成连续的k段,每段的权值是该段中不同数的个数,
输出最大权值和。
数据范围:n<=35000,k<=min(n,50),1<=a(i)<=n
题解:
很容易想到暴力dp的方式
dp[i][j]:前1-i个数分成了j个段
那么dp[i][j]=max(dp[k][j-1]+val[k+1][i]) //val[i][j]表示区间i-j中不同数的个数
这个方法的复杂度就是O(n^2*k),很显然不可行
那么我们可以把找max(dp[k][j-1]+val[k+1][i])这个过程使用线段树优化掉
我们可以从1-n的数分成j段建立一颗线段树,也就是对dp[x][j](1<=x<=n)建一颗线段树维护这n个数的最大值
然后对dp[i][j]的求解可以从维护dp[x][j-1]这一颗树中查找区间【1,(i-1)】的最大值
但是有一点不对,因为dp[i][j]由dp[k][j-1]和val[k+1][i]两部分构成,所以只有dp[k][j-1]最大并不一定可以得到
dp[i][j]最大,所以我们就要想办法处理一下维护dp[x][j]的线段树,让线段树维护这两部分的和
对于下面的一组数(下标从1开始)
7 8 1 7
第二个7的有效区域是[2,4],那么我们可以在原有维护dp[x][j]的线段树基础上,线段树在[2,4]这个区间的值都加1
这样的话就相当于让线段树维护了两部分的和
/*
题意:
给长度为n的数组a,和一个整数k
要求把数组分成连续的k段,每段的权值是该段中不同数的个数,
输出最大权值和。
数据范围:n<=35000,k<=min(n,50),1<=a(i)<=n 题解:
很容易想到暴力dp的方式
dp[i][j]:前1-i个数分成了j个段
那么dp[i][j]=max(dp[k][j-1]+val[k+1][i]) //val[i][j]表示区间i-j中不同数的个数
这个方法的复杂度就是O(n^2*k),很显然不可行 那么我们可以把找max(dp[k][j-1]+val[k+1][i])这个过程使用线段树优化掉
我们可以从1-n的数分成j段建立一颗线段树,也就是对dp[x][j](1<=x<=n)建一颗线段树维护这n个数的最大值
然后对dp[i][j]的求解可以从维护dp[x][j-1]这一颗树中查找区间【1,(i-1)】的最大值 但是有一点不对,因为dp[i][j]由dp[k][j-1]和val[k+1][i]两部分构成,所以只有dp[k][j-1]最大并不一定可以得到
dp[i][j]最大,所以我们就要想办法处理一下维护dp[x][j]的线段树,让线段树维护这两部分的和 对于下面的一组数(下标从1开始)
7 8 1 7
第二个7的有效区域是[2,4],那么我们可以在原有维护dp[x][j]的线段树基础上,线段树在[2,4]这个区间的值都加1
这样的话就相当于让线段树维护了两部分的和 */ #include <cstdio>
#include <cstring>
#include <iostream>
#include<algorithm>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int maxn=5e4+10;
const int mod=1000000007;
const int INF=0x3f3f3f3f;
const long long ll_INF=0x3f3f3f3f3f3f3f3fll;
int tree[maxn<<2],dp[maxn][55],v[maxn],pre[maxn],mark[maxn],lazy[maxn<<2];
void push_up(int rt)
{
tree[rt]=max(tree[rt<<1],tree[rt<<1|1]);
}
void build(int rt,int L,int R,int x)
{
tree[rt]=lazy[rt]=0;
if(L==R)
{ //对于dp[j][i]的值由dp[k][i]+val[k+1][j]得到,且要保证k<j,所以用dp[L-1][x-1]来给第L位置赋值
tree[rt]=dp[L-1][x-1]; //给n个节点赋初始值
return;
}
int mid=(L+R)>>1;
build(rt<<1,L,mid,x);
build(rt<<1|1,mid+1,R,x);
push_up(rt);
}
void push_down(int rt)
{
if(lazy[rt])
{
lazy[rt<<1]+=lazy[rt]; //上一个节点的lazy值保存的是它子节点的偏移量
lazy[rt<<1|1]+=lazy[rt];
tree[rt<<1]+=lazy[rt];
tree[rt<<1|1]+=lazy[rt];
lazy[rt]=0;
}
}
void update(int rt,int L,int R,int LL,int RR)
{
if(LL<=L && RR>=R)
{
lazy[rt]++;
tree[rt]++;
return ;
}
push_down(rt);
int mid=(L+R)/2;
if(LL<=mid)update(rt<<1,L,mid,LL,RR);
if(RR>mid)update(rt<<1|1,mid+1,R,LL,RR);
push_up(rt);
}
int query(int rt,int L,int R,int LL,int RR)
{
if(LL<=L && RR>=R)
{
return tree[rt];
}
push_down(rt);
int mid=(L+R)>>1,ans=0;
if(LL<=mid) ans=max(ans,query(rt<<1,L,mid,LL,RR));
if(RR>mid) ans=max(ans,query(rt<<1|1,mid+1,R,LL,RR));
return ans;
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1; i<=n; ++i)
scanf("%d",&v[i]);
for(int i=1; i<=n; ++i)
{
pre[i]=mark[v[i]]+1;
mark[v[i]]=i;
}
for(int i=1; i<=k; ++i)
{
build(1,1,n,i);
for(int j=1; j<=n; ++j)
{
update(1,1,n,pre[j],j);
dp[j][i]=query(1,1,n,1,j);
}
}
printf("%d\n",dp[n][k]);
return 0;
}
CodeForces833 B. The Bakery 线段树维护dp的更多相关文章
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
- Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp
D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- Codeforces GYM 100114 D. Selection 线段树维护DP
D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...
- 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】
题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的. 然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个.如下图 而如果一条链上面有分支,也 ...
- 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵
题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...
- Codeforces750E. New Year and Old Subsequence (线段树维护DP)
题意:长为2e5的数字串 每次询问一个区间 求删掉最少几个字符使得区间有2017子序列 没有2016子序列 不合法输出-1 题解:dp i,p(0-4)表示第i个数匹配到2017的p位置删掉的最少数 ...
- hdu4719 Oh My Holy FFF 线段树维护dp
题意:给你一个长度为n的数组v,你需要把这个数组分成很多段,你需要保证每一段的长度不能超过k我们设一共有m段,每一段右边界那个数为bi那么我们要使得sum(bi*bi-b(i-1))最大 (1< ...
随机推荐
- go跳出多层循环的几种方式
前言 比如这样的需求, 遍历一个 切片, 切片内容是切片1, 需求是判断切片1中某个是否有相应数据, 有就返回 正文 我们需要考虑的是在写两层遍历时如何在获取结果后结束这两层遍历 变量法 设置一个变量 ...
- 【MySQL 高级】知识拓展
MySQL高级 知识拓展 MySQL高级 知识拓展 数据量 和 B+树 的关系 事务隔离级别集底层原理MVCC 唯一索引和普通索引的关键不同点 MRR:multi range read 练习和总结
- 计算机考研复试真题 a+b(大数加法)
题目描述 实现一个加法器,使其能够输出a+b的值. 输入描述: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出描述: 可能有多组测试数据,对于每组数据, 输出a+b的值. 示例1 输入 ...
- MyBatis初级实战之二:增删改查
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- 【Git】5、Git如何提交代码到远程仓库
提交代码:如何把修改后的代码提交到远程仓库 文章目录 提交代码:如何把修改后的代码提交到远程仓库 1.同步远程代码 2.检查改动文件 3.添加文件到缓存 4.提交代码 5.推送代码 6.我的整个流程 ...
- Spring Cloud微服务Sentinel+Apollo限流、熔断实战总结
在Spring Cloud微服务体系中,由于限流熔断组件Hystrix开源版本不在维护,因此国内不少有类似需求的公司已经将眼光转向阿里开源的Sentinel框架.而以下要介绍的正是作者最近两个月的真实 ...
- LeetCode383. 赎金信
题目 给定一个赎金信 (ransom) 字符串和一个杂志(magazine)字符串,判断第一个字符串 ransom 能不能由第二个字符串 magazines 里面的字符构成.如果可以构成,返回 tru ...
- Pandas应用案例-股票分析:使用tushare包获取股票的历史行情数据进行数据分析
目标: 使用tushare包获取股票的历史行情数据 输出该股票所有收盘比开盘上涨3%以上的日期 输出该股票所有开盘比前日收盘跌幅超过2%以上的日期 假如为我们从2010年1月1日开始,每月第一个交易日 ...
- 修改主机名后VCS的修改
转:https://blog.csdn.net/nauwzj/article/details/6733135 一. 单机改主机名需更改以下文件: /etc/hosts /etc/hostname.hm ...
- windows_myql 安装与卸载详细讲解,
windows_myql 安装 注意: 安装前把 所有杀毒软件,安全卫士等关闭. 打开下载的mysql安装文件双击解压缩,运行"mysql-5.5.40-win64.msi". 注 ...