中科大数分教材:用阶乘倒数和计算e值的误差和e是无理数的证明,用到误差计算
\(e=lim_{n \to \infty}e_{n}(1+\frac{1}{n})^n\\\)
\(=\lim_{n \to \infty}(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot+...\frac{1}{n!})\)
\(\lim_{n \to \infty}S_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot+\cdot+\frac{1}{n!}=e\)
因为两个数列有相同的极限e,取充分大的n,用S_{n}作为e的近似值。
\(因为S_{n+1}=S_{n}+\frac{1}{n!}*\frac{1}{n+1}\\\)
\(在计算过程中,可以利用前面已经计算出来的S_{n}的结果\\\)
\(产生的误差为\\\)
\(S_{n+m}-S{n}>0\\\)
\(S_{n+m}-S{n}\\\)
\(=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdot\cdot\cdot+\frac{1}{(n+m)!}\\\)
\(=\frac{1}{(n+1)!}*(1+\frac{1}{n+2}+\cdot\cdot\cdot+\frac{1}{(n+2)(n+3)\cdot\cdot\cdot(n+m)})\\\)
\(<\frac{1}{(n+1)!}*(1+\frac{1}{n+1}+(\frac{1}{n+1})^2+(\frac{1}{n+1})^3\cdot\cdot\cdot+(\frac{1}{n+1})^{m-1})\\\)
等比数列和公式:\(S_{n}=na_{1}, q=1,\quad S_{n}=a_{1}.\frac{1-q^n}{1-q}, q\neq 1\\\)
其中n为项数。
故
\(上式=\frac{1}{(n+1)!}*\frac{1-(\frac{1}{n+1})^m}{1-\frac{1}{n+1}}\\\)
\(\quad =\frac{1}{n!n}\)
\(即0<S_{n+m}-S_{n}<\frac{1}{n!n}\)
\(若m\to \infty,可得\\\)
\(0 < e - S_{n} \leqslant \frac{1}{n!n}\quad\quad\quad n \in N^{+}\quad\quad\quad(1)\\\)
证明e是无理数
证明:用反证法。
\(设 e=frac{p}{q},其中p,q\in N^{+}\)
\(因为2<e<3\),可知e不是整数,且q不等于1,否则,若q=1,\(\\\)
\(则e=\frac{p}{q}=\frac{p}{1}=p,为整数,可知q\geqslant2\)
\(由(1)式,当n=q时,S_{n}=S_{q}, (1)式中的n!n,替换为q!q,可得\\\)
\(\quad0<q!(e-S_{q})\leqslant \frac{1}{q}\leqslant \frac{1}{2}\quad\quad\quad(2)\\\)
\(把e=\frac{p}{q}代人下式\\\)
\(q!(e-S_{q})=q!(\frac{p}{q} - S_{q})\)
\(\quad\quad\quad\quad\quad=(q-1)!p-q!(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{q!}))\)
\(上式为整数,与(2)式矛盾\)
中科大数分教材:用阶乘倒数和计算e值的误差和e是无理数的证明,用到误差计算的更多相关文章
- for循环计算阶乘的和,for循环计算阶乘倒数的和
计算阶乘的和 //阶乘的和,5!+4!+3!+2! int a = 5; for(int b = 4; b > 0; b--) { a = a * b; } //先定义好最大数的阶乘是多少 in ...
- Miiler-Robin素数测试与Pollard-Rho大数分解法
板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素 ...
- Java循环输出一个菱形与阶乘倒数
package javafirst; public class HomeWork { public static void main(String[] args){ System.out.printl ...
- 输出链表的倒数第K个值
题目描述 输入一个链表,输出该链表中倒数第k个结点. 思路一:链表不能向前遍历,只能向后遍历.因此倒数第K个结点就是 正序的 :len(链表)-1-K的下一个. 注意,此处的思路与代码中具体实 ...
- mysql计算时间差值,单位分钟数
TIMESTAMPDIFF(MINUTE, 开始时间, 结束时间) as 时间差(单位:分钟数) TIMESTAMPDIFF(interval,datetime_expr1,datetime_expr ...
- 查找单链表的倒数第k个值
刚开始,我想到的是一种笨方法,先遍历单链表,计算出单链表的长度len,然后再从头遍历单链表到第len-k个节点,那么 这个节点既是单链表的倒数第k个节点. 不过这种算法时间复杂度挺高的,还有一种更简单 ...
- vuex分模块后,如何获取state的值
问题:vuex分模块后,一个模块如何拿到其他模块的state值,调其他模块的方法? 思路:1.通过命名空间取值--this.$store.state.car.list // OK 2.通过定义该属性的 ...
- PAT 1009 Product of Polynomials (25分) 指数做数组下标,系数做值
题目 This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: E ...
- e的存在性证明和计算公式的证明
\(\quad\quad前言\quad\quad\\\) \(此证明,改编自中科大数分教材,史济怀版\\\) \(中科大教材,用的是先固定m,再放大m,跟菲赫金哥尔茨的方法一样.\\\) \(而我这里 ...
随机推荐
- SpringBoot--数据库管理与迁移(LiquiBase)
随着开发时间积累,一个项目会越来越大,同时表结构也越来越多,管理起来比较复杂,特别是当想要把一个答的项目拆分成多个小项目时,表结构拆分会耗很大的精力:如果使用LiquiBase对数据库进行管理,那么就 ...
- 【Spring】内嵌Tomcat&去Xml&调试Mvc
菜瓜:今天听到个名词“父子容器”,百度了一下,感觉概念有点空洞,这是什么核武器? 水稻:你说的是SpringMvc和Spring吧,其实只是一个概念而已,用来将两个容器做隔离,起到解耦的作用,其中子容 ...
- Glusterfs读写性能测试与分析
一.测试目的: 1.测试分布卷(Distributed).分布式复制卷(Distributed-Replicate).条带卷(Strip)和分布式条带复制卷(Distributed-Strip-Rep ...
- c++ 宏定义调用不定参数的函数
假设有一下函数 void Logging(int nLevel, const char* szFormat, ...); 则宏定义如下 #define LOG(FCFL) Logging##FCFL ...
- python-循环-两种方法实现九九乘法表
方法一:用最基本的while循环嵌套(基础时,便于理解) while循环的嵌套,先执行里边的,再执行外边的 i = 1 while i <= 9: j = 1 while j <= i: ...
- IdentityServer4 4.x版本 配置Scope的正确姿势
前言 IdentityServer4 是为ASP.NET Core系列量身打造的一款基于 OpenID Connect 和 OAuth 2.0 认证的框架 IdentityServer4官方文档:ht ...
- day35 作业
服务端 import subprocess import struct import json from socket import * server = socket(AF_INET, SOCK_S ...
- LintCode笔记 - 145.大小写转换 - 极简之道 - 最短代码
这道题目一眼就能看出是送分题,当然在这里也不谈高难度的实现逻辑,肯定有同学会想直接用自带函数实现不就可以了吗? 对的,就是这么简单,然而今天的重点是如何把代码简写到最短. 本文章将带你把代码长度从 一 ...
- 简单shellcode学习
本文由“合天智汇”公众号首发 作者:hope 引言 之前遇到没开启NX保护的时候,都是直接用pwtools库里的shellcode一把梭,也不太懂shellcode代码具体做了些什么,遇到了几道不能一 ...
- Python面试【315+道题】
第一部分 Python基础篇(80题) 为什么学习Python? 通过什么途径学习的Python? Python和Java.PHP.C.C#.C++等其他语言的对比? 简述解释型和编译型编程语言? P ...