数据读取

import pandas as pd
features=['accommodates','bathrooms','bedrooms','beds','price','minimum_nights','maximum_nights','number_of_reviews']
dc_listings=pd.read_csv('listings.csv')
dc_listings=dc_listings[features]
print(dc_listings.shape)
dc_listings.head()

运行结果:

K:候选对象个数,近邻数(如找3个和自己最近的样本)

 先使用可容纳旅客的数量(accommodates)做一个简单计算,统计与可容纳3个旅客相减的情况(当前要估计价格的可容纳旅客数为3个)
import numpy as np
our_acc_value=3#房间数为3个
dc_listings['distance']=np.abs(dc_listings.accommodates-our_acc_value)#为dc_listings新增distance列,用于保存当前房间数与3的差值
dc_listings.distance.value_counts().sort_index()#统计各差值的情况

输出:

0.0      3370
1.0 17967
1.5 2
2.0 3865
3.0 1250
4.0 221
5.0 334
6.0 58
7.0 125
8.0 15
9.0 44
10.0 5
11.0 14
12.0 5
13.0 73
Name: distance, dtype: int64
原始数据统计过程中可能会存在一些规律,一般需要进行洗牌操作,打乱原有秩序(使用sample函数)
dc_listings=dc_listings.sample(frac=1,random_state=0)#洗牌 frac:抽取行的比例,1为100%  random_state:0表示不得取重复数据 1表示可以取重复数据
dc_listings=dc_listings.sort_values('distance')#统计差值(房间数-3)的情况 将dc_listings按照distance列排序 将和房间数3最近的放在最前面
dc_listings.price.head()#取前5条的价格 由于数据时乱的,所以id和price均无规律

输出结果:

2732     $129.00
14798 $249.00
27309 $170.00
20977 $169.00
11178 $100.00
Name: price, dtype: object

对价格进行类型转换,去掉$符号,转换成float,然后对前五个价格取均值,用前5个的均值来预测当前房价
dc_listings['price']=dc_listings.price.str.replace("\$|,",'').astype(float)
mean_price=dc_listings.price.iloc[:5].mean()
mean_price

输出:163.4

拿75%的数据作为训练集,25%的数据作为测试集来进行模型的评估,训练集和测试集不可重复。

dc_listings.drop('distance',axis=1)#删除distance列
train_df=dc_listings.copy().iloc[:20544]#27392*0.75行为训练集
test_df=dc_listings.copy().iloc[20544:]#剩下的作为测试集(27392*0.25)

基于单变量预测价格

#new_listing_value:当前样本的feature_clolumn(如accomodates)列属性取值
#feture_column:计算房租使用的单属性
def predict_price(new_listing_value,feature_column):
temp_df=train_df#使用训练集来预测测试集房租结果
dc_listings[feature_column]=train_df[feature_column].astype(float)#统一将格式转换成float否则会报错
temp_df['distance']=np.abs(train_df[feature_column]-new_listing_value)
temp_df=temp_df.sort_values('distance')
knn_5=temp_df.price.iloc[:5]
predict_price=knn_5.mean()
return(predict_price)

对测试集的每一条记录使用accomodates属性预测其房租价格

#new_listing_value的值即为accommodates的取值
test_df['predicted_price']=test_df.accommodates.apply(predict_price,feature_column='accommodates')
test_df.predicted_price.head()

输出:

14122    134.0
23556 418.0
16317 134.0
26230 134.0
19769 134.0
Name: predicted_price, dtype: float64

root mean square error(RMSE)均方根误差

得到每个样本的预测值后计算均方根误差用于评估模型(值越小模型越好)

test_df['squared_error']=(test_df['predicted_price']-test_df['price'])**(2)
mse=test_df['squared_error'].mean()
rmse=mse**(1/2)
rmse

输出结果:

348.689169172284

试试不同的变量(属性)

for feature in ['accommodates','bedrooms','bathrooms','number_of_reviews']:
test_df['predicted_price']=test_df[feature].apply(predict_price,feature_column=feature)
test_df['squared_error']=(test_df['predicted_price']-test_df['price'])**(2)
mse=test_df['squared_error'].mean()
rmse=mse**(1/2)
print("RMSE for the {} column:{}".format(feature,rmse))

输出:

RMSE for the accommodates column:348.689169172284
RMSE for the bedrooms column:344.64855009943
RMSE for the bathrooms column:361.1230782594195
RMSE for the number_of_reviews column:383.4946020709275

注:由于每个测试集中的样本都要与训练集中样本一一比对,所以上述程序运行时间较长,需要耐心等待……

标准化

 

同时使用多个属性——如房间数(个位数)和房间面积(几十甚至上百)进行计算的时候,由于变量取值范围的不同(取值范围大的影响较大)会导致对计算结果的不良影响(如计算欧式距离时,房间面积差值平方计算结果通常较大,而房间数差值平方较小),而各个属性是独立的即它们是同等重要的,所以需要对数据进行标准化,如采用z-score标准化归一化等手段进行预处理

 

z-score 标准化(Z-score normalization)

 

要求数据总体均值μ=0 标准差σ=1

转换公式如下:

其中μ为原始数据均值,

机器学习入门实战——基于knn的airbnb房租预测的更多相关文章

  1. web安全之机器学习入门——3.1 KNN/k近邻

    目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...

  2. 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码

    下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...

  3. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  4. Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...

  5. 向大家介绍我的新书:《基于股票大数据分析的Python入门实战》

    我在公司里做了一段时间Python数据分析和机器学习的工作后,就尝试着写一本Python数据分析方面的书.正好去年有段时间股票题材比较火,就在清华出版社夏老师指导下构思了这本书.在这段特殊时期内,夏老 ...

  6. 基于股票大数据分析的Python入门实战(视频教学版)的精彩插图汇总

    在我写的这本书,<基于股票大数据分析的Python入门实战(视频教学版)>里,用能吸引人的股票案例,带领大家入门Python的语法,数据分析和机器学习. 京东链接是这个:https://i ...

  7. 【机器学习】机器学习入门01 - kNN算法

    0. 写在前面 近日加入了一个机器学习的学习小组,每周按照学习计划学习一个机器学习的小专题.笔者恰好近来计划深入学习Python,刚刚熟悉了其基本的语法知识(主要是与C系语言的差别),决定以此作为对P ...

  8. Spark入门实战系列--1.Spark及其生态圈简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...

  9. Spark入门实战系列--3.Spark编程模型(上)--编程模型及SparkShell实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spar ...

随机推荐

  1. 关于Vue v-model你需要知道的一切

    ​v-model是Vue的一个指令,它提供了input和form数据之间或两个组件之间的双向数据绑定. 这在Vue开发中是一个简单的概念,但是v-model的真正威力需要一些时间才能理解. 到本教程结 ...

  2. Java SPI机制详解

    Java SPI机制详解 1.什么是SPI? SPI 全称为 (Service Provider Interface) ,是JDK内置的一种服务提供发现机制.SPI是一种动态替换发现的机制, 比如有个 ...

  3. Vue中:error 'XXXXX' is not defined no-undef解决办法

    Vue中:error 'XXXXX' is not defined no-undef解决办法 报错内容: × Client Compiled with some errors in 7.42s √ S ...

  4. 判断2个list中是否有相同的数据(相交)Collections.disjoint

    https://blog.csdn.net/yang_niuxxx/article/details/85092490 private void initData() { for (int i = 0; ...

  5. OPC UA 统一架构) (二)

    OPC UA (二) 重头戏,捞取数据,才是该干的事.想获取数据,先有数据源DataPrivade,DataPrivade的数据集合不能和BaseDataVariableState的集合存储同一地址, ...

  6. Spring听课笔记(专题一)

    Spring入门课程:https://www.imooc.com/learn/196 第0章: Spring是为解决企业应用程序开发复杂性而创建的一个Java开源框架,应用非常广泛.业内非常流行的SS ...

  7. FridaHook框架学习(1)

    FridaHook框架学习(1) 前言 本次学习过程参考https://bbs.pediy.com/thread-227232.htm Frida安装与使用 Windows端安装 pip instal ...

  8. MySql(三)存储过程和函数

    MySql(三)存储过程和函数 一.什么是存储过程和函数 二.存储过程和函数的相关操作 一.什么是存储过程和函数 存储过程和函数是事先经过编译并存储在数据库中的一段SQL语句的集合,调用存储过程和函数 ...

  9. hadoop知识点总结(三)YARN设计理念及基本架构

    YARN设计理念与基本架构 1,MRv1的局限性:扩展性差,可靠性差,资源利用率低,无法支持多种计算框架 2,YARN基本设计思想 1)基本框架对比 Hadoop1.0中,JobTracker由资源管 ...

  10. WPF 之 INotifyPropertyChanged 接口的使用 (一)

    一.INotifyPropertyChanged 的基本概念 ​ INotifyPropertyChanged 的作用:通知客户端属性值已经更改.详细信息见:INotifyPropertyChange ...