BST(二叉搜索树)

  • 首先,我们定义树的数据结构如下:
public class TreeNode {
int val;
TreeNode left;
TreeNode right; public TreeNode(int val) {
this.val = val;
this.left = null;
this.right = null;
}
}

一、判断BST的合法性

二叉搜索树的左子树节点都比父节点要小、右子树节点都比父节点要大;每一个子树都是BST。

我们遍历的时候如果只比较父节点和他的子节点大小的话,会有bug:

public boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
if (root == null) {
return true;
} if (min != null && root.val <= root.left.val) {
return false;
} if (max != null && root.val >= root.right.val) {
return false;
} return isValidBST(root.left, min, root) && isValidBST(root.right, root, max);
}

对于这样子的树,确实满足左子树小于父节点,右子树大于父节点,但是却不是一个BST,所以我们使用两个辅助参数来解决这个问题:

public boolean isValidBST(TreeNode root) {
return isValidBST(root, null, null);
} public boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
if (root == null) {
return true;
} if (min != null && root.val <= min.val) {
return false;
} if (max != null && root.val >= max.val) {
return false;
} // 左子树不得大于max边界,右子树不得小于min边界,就能得到正确结果了
return isValidBST(root.left, min, root) && isValidBST(root.right, root, max);
}

二、在BST中查找目标值

直接暴力全部搜索:

boolean isInBST(TreeNode root, int target) {
if (root == null) {
return false;
}
if (root.val == target) {
return true;
} return isInBST(root.left, target) || isInBST(root.right, target);
}

但是BST有左小右大的这个特性,于是可以运用类似二分的思想,只需要将target和当前结点值比较,如果小于,就搜索左边,右边就可以不用搜索,反之:

boolean isInBST(TreeNode root, int target) {
if (root == null) {
return false;
}
if (root.val == target) {
return true;
}
if (root.val < target) {
return isInBST(root.right, target);
} else {
return isInBST(root.left, target);
}
}

三、在BST中插入一个值

TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) {
return new TreeNode(val);
} if (root.val == val) {
return root;
} // 比节点的值大
if (root.val < val) {
root.right = insertIntoBST(root.right, val);
}
// 比节点的值小
if (root.val > val) {
root.left = insertIntoBST(root.left, val);
} return root;
}

四、在BST中删除一个值

  • 分三种情况:

    1. 没有左右子节点:

      • 可以直接删除
    2. 只有左子树或者只有右子树
      • 只需将上一个父节点的next指向他的唯一孩子即可
    3. 既有左子树又有右子树
      • 找到待删除节点的右子树的最小的那个值,与待删除的节点进行交换,然后把待删除的节点删除(这里只是进行值得交换,实际中一个节点可能包含多个域,应该要修改指针得指向,而不是简单得交换数据)
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null) {
return null;
} if (root.val == key) {
// 删除
// 如果只有一个或者没有子树得情况
if (root.left == null) {
return root.right;
}
if (root.right == null) {
return root.left;
} // 当既有左子树又有右子树时
// 这里只是进行值交换,应该进行指针修改
TreeNode minNode = getMin(root);
root.val = minNode.val;
// 删除交换后得节点,相当于此时待删除节点又跑到末尾去了
root.right = deleteNode(root.right, key);
} else if (root.val > key) {
// 去左子树找
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
// 去右子树找
root.right = deleteNode(root.right, key);
} return root;
} public TreeNode getMin(TreeNode node) {
while (node.left != null) {
node = node.left;
}
return node;
}

BST(二叉搜索树)的基本操作的更多相关文章

  1. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  2. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  3. bst 二叉搜索树简单实现

    //数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...

  4. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  5. [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    Given a binary search tree with non-negative values, find the minimum absolute difference between va ...

  6. 浅析BST二叉搜索树

    2020-3-25 update: 原洛谷日报#2中代码部分出现一些问题,详情见此帖.并略微修改本文一些描述,使得语言更加自然. 2020-4-9 update:修了一些代码的锅,并且将文章同步发表于 ...

  7. 530 Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    给定一个所有节点为非负值的二叉搜索树,求树中任意两节点的差的绝对值的最小值.示例 :输入:   1    \     3    /   2输出:1解释:最小绝对差为1,其中 2 和 1 的差的绝对值为 ...

  8. LeetCode #938. Range Sum of BST 二叉搜索树的范围和

    https://leetcode-cn.com/problems/range-sum-of-bst/ 二叉树中序遍历 二叉搜索树性质:一个节点大于所有其左子树的节点,小于其所有右子树的节点 /** * ...

  9. Leetcode938. Range Sum of BST二叉搜索树的范围和

    给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和. 二叉搜索树保证具有唯一的值. 示例 1: 输入:root = [10,5,15,3,7,null,18], L = 7 ...

  10. 标准BST二叉搜索树写法

    本人最近被各种数据结构的实验折磨的不要不要的,特别是代码部分,对数据结构有严格的要求,比如写个BST要分成两个类,一个节点类,要给树类,关键是所以操作都要用函数完成,也就是在树类中不能直接操作节点,需 ...

随机推荐

  1. PerformanceObserver API All In One

    PerformanceObserver API All In One 性能监控 https://developer.mozilla.org/en-US/docs/Web/API/Performance ...

  2. Twitter 分享

    Twitter 分享 Twitter Share API https://twitter.com/intent/tweet?url= &text= demo ?url= https://www ...

  3. Next.js & SSR & CSR & SG

    Next.js & SSR & CSR & SG getStaticPaths, getStaticProps, getServerSideProps getStaticPro ...

  4. Chrome & targetText

    Chrome & targetText target text http://www.ruanyifeng.com/blog/2019/03/weekly-issue-47.html http ...

  5. 灰度发布 & A/B 测试

    灰度发布 & A/B 测试 http://www.woshipm.com/pmd/573429.html 8 https://testerhome.com/topics/15746 scree ...

  6. BGV再掀DeFi投资热潮,NGK全球启动大会圆满落幕

    此次全球启动大会的主题为"BGV再掀DeFi投资热潮,后市发展如何". 首先发言的是NGK灵石团队首席技术官STEPHEN先生,他先是对出席此次大会的嘉宾.到场的媒体记者以及NGK ...

  7. BGV上线两天价格超过880美金,下一个YFI已到来!

    BGV自上线以来就备受币圈关注,众多投资者纷纷表示看好BGV.BGV也不负众望,在上线交易所第二天,价格就迎来了暴涨,最高价格为888.88美金,超越了当前以太坊的价值.而这也迎来了币圈众多投资者的一 ...

  8. React Native选择器组件-react-native-slidepicker

    react-native-slidepicker 一个纯 JavaScript 实现的的 React Native 组件,用于如地址,时间等分类数据选择的场景. github: https://git ...

  9. 1079 Total Sales of Supply Chain ——PAT甲级真题

    1079 Total Sales of Supply Chain A supply chain is a network of retailers(零售商), distributors(经销商), a ...

  10. 开源OA办公平台功能介绍:应用市场-固定资产管理(一)功能设计

    概述 应用市场-固定资产管理,是用来维护管理企业固定资产的一个功能.其整个功能包括对固定资产的台账信息.领用.调拨.借用.维修.盘点.报废等一整个生命周期的动态管理过程.力求客户安装就可以使用. 本应 ...