论Redis分布式锁的正确使用姿势
前言
日常开发中,秒杀下单、抢红包等等业务场景,都需要用到分布式锁。而Redis非常适合作为分布式锁使用。本文将分七个方案展开,跟大家探讨Redis分布式锁的正确使用方式。如果有不正确的地方,欢迎大家指出哈,一起学习一起进步。
- 什么是分布式锁
- 方案一:SETNX + EXPIRE
- 方案二:SETNX + value值是(系统时间+过期时间)
- 方案三:使用Lua脚本(包含SETNX + EXPIRE两条指令)
- 方案四:SET的扩展命令(SET EX PX NX)
- 方案五:SET EX PX NX + 校验唯一随机值,再释放锁
- 方案六: 开源框架:Redisson
- 方案七:多机实现的分布式锁Redlock
什么是分布式锁
分布式锁其实就是,控制分布式系统不同进程共同访问共享资源的一种锁的实现。如果不同的系统或同一个系统的不同主机之间共享了某个临界资源,往往需要互斥来防止彼此干扰,以保证一致性。
我们先来看下,一把靠谱的分布式锁应该有哪些特征:
- 互斥性: 任意时刻,只有一个客户端能持有锁。
- 锁超时释放:持有锁超时,可以释放,防止不必要的资源浪费,也可以防止死锁。
- 可重入性:一个线程如果获取了锁之后,可以再次对其请求加锁。
- 高性能和高可用:加锁和解锁需要开销尽可能低,同时也要保证高可用,避免分布式锁失效。
- 安全性:锁只能被持有的客户端删除,不能被其他客户端删除
Redis分布式锁方案一:SETNX + EXPIRE
提到Redis的分布式锁,很多小伙伴马上就会想到setnx
+ expire
命令。即先用setnx
来抢锁,如果抢到之后,再用expire
给锁设置一个过期时间,防止锁忘记了释放。
SETNX 是SET IF NOT EXISTS的简写.日常命令格式是SETNX key value,如果 key不存在,则SETNX成功返回1,如果这个key已经存在了,则返回0。
假设某电商网站的某商品做秒杀活动,key可以设置为key_resource_id,value设置任意值,伪代码如下:
if(jedis.setnx(key_resource_id,lock_value) == 1){ //加锁
expire(key_resource_id,100); //设置过期时间
try {
do something //业务请求
}catch(){
}
finally {
jedis.del(key_resource_id); //释放锁
}
}
复制代码
但是这个方案中,setnx
和expire
两个命令分开了,不是原子操作。如果执行完setnx
加锁,正要执行expire
设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老”了,别的线程永远获取不到锁啦。
Redis分布式锁方案二:SETNX + value值是(系统时间+过期时间)
为了解决方案一,发生异常锁得不到释放的场景,有小伙伴认为,可以把过期时间放到setnx
的value值里面。如果加锁失败,再拿出value值校验一下即可。加锁代码如下:
long expires = System.currentTimeMillis() + expireTime; //系统时间+设置的过期时间
String expiresStr = String.valueOf(expires);
// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(key_resource_id, expiresStr) == 1) {
return true;
}
// 如果锁已经存在,获取锁的过期时间
String currentValueStr = jedis.get(key_resource_id);
// 如果获取到的过期时间,小于系统当前时间,表示已经过期
if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
// 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
String oldValueStr = jedis.getSet(key_resource_id, expiresStr);
if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
// 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
return true;
}
}
//其他情况,均返回加锁失败
return false;
}
复制代码
这个方案的优点是,巧妙移除expire
单独设置过期时间的操作,把过期时间放到setnx的value值里面来。解决了方案一发生异常,锁得不到释放的问题。但是这个方案还有别的缺点:
- 过期时间是客户端自己生成的(System.currentTimeMillis()是当前系统的时间),必须要求分布式环境下,每个客户端的时间必须同步。
- 如果锁过期的时候,并发多个客户端同时请求过来,都执行jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖
- 该锁没有保存持有者的唯一标识,可能被别的客户端释放/解锁。
Redis分布式锁方案三:使用Lua脚本(包含SETNX + EXPIRE两条指令)
实际上,我们还可以使用Lua脚本来保证原子性(包含setnx和expire两条指令),lua脚本如下:
if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then
redis.call('expire',KEYS[1],ARGV[2])
else
return 0
end;
复制代码
加锁代码如下:
String lua_scripts = "if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then" +
" redis.call('expire',KEYS[1],ARGV[2]) return 1 else return 0 end";
Object result = jedis.eval(lua_scripts, Collections.singletonList(key_resource_id), Collections.singletonList(values));
//判断是否成功
return result.equals(1L);
复制代码
这个方案还是有缺点的哦,至于哪些缺点,你先思考一下。也可以想下。跟方案二对比,哪个更好?
Redis分布式锁方案方案四:SET的扩展命令(SET EX PX NX)
除了使用,使用Lua脚本,保证SETNX + EXPIRE
两条指令的原子性,我们还可以巧用Redis的SET指令扩展参数!(SET key value[EX seconds][PX milliseconds][NX|XX]
),它也是原子性的!
SET key value[EX seconds][PX milliseconds][NX|XX]
- NX :表示key不存在的时候,才能set成功,也即保证只有第一个客户端请求才能获得锁,而其他客户端请求只能等其释放锁,才能获取。
- EX seconds :设定key的过期时间,时间单位是秒。
- PX milliseconds: 设定key的过期时间,单位为毫秒
- XX: 仅当key存在时设置值
伪代码demo如下:
if(jedis.set(key_resource_id, lock_value, "NX", "EX", 100s) == 1){ //加锁
try {
do something //业务处理
}catch(){
}
finally {
jedis.del(key_resource_id); //释放锁
}
}
复制代码
但是呢,这个方案还是可能存在问题:
- 问题一:锁过期释放了,业务还没执行完。假设线程a获取锁成功,一直在执行临界区的代码。但是100s过去后,它还没执行完。但是,这时候锁已经过期了,此时线程b又请求过来。显然线程b就可以获得锁成功,也开始执行临界区的代码。那么问题就来了,临界区的业务代码都不是严格串行执行的啦。
- 问题二:锁被别的线程误删。假设线程a执行完后,去释放锁。但是它不知道当前的锁可能是线程b持有的(线程a去释放锁时,有可能过期时间已经到了,此时线程b进来占有了锁)。那线程a就把线程b的锁释放掉了,但是线程b临界区业务代码可能都还没执行完呢。
方案五:SET EX PX NX + 校验唯一随机值,再删除
既然锁可能被别的线程误删,那我们给value值设置一个标记当前线程唯一的随机数,在删除的时候,校验一下,不就OK了嘛。伪代码如下:
if(jedis.set(key_resource_id, uni_request_id, "NX", "EX", 100s) == 1){ //加锁
try {
do something //业务处理
}catch(){
}
finally {
//判断是不是当前线程加的锁,是才释放
if (uni_request_id.equals(jedis.get(key_resource_id))) {
jedis.del(lockKey); //释放锁
}
}
}
复制代码
在这里,判断是不是当前线程加的锁和释放锁不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁。
为了更严谨,一般也是用lua脚本代替。lua脚本如下:
if redis.call('get',KEYS[1]) == ARGV[1] then
return redis.call('del',KEYS[1])
else
return 0
end;
Redis分布式锁方案六:Redisson框架
方案五还是可能存在锁过期释放,业务没执行完的问题。有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。
当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:
只要线程一加锁成功,就会启动一个watch dog
看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题。
Redis分布式锁方案七:多机实现的分布式锁Redlock+Redisson
前面六种方案都只是基于单机版的讨论,还不是很完美。其实Redis一般都是集群部署的:
如果线程一在Redis的master节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。
为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:Redlock。Redlock核心思想是这样的:
搞多个Redis master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。
我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。
edLock的实现步骤:如下
- 1.获取当前时间,以毫秒为单位。
- 2.按顺序向5个master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
- 3.客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms)
- 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
- 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。
简化下步骤就是:
- 按顺序向5个master节点请求加锁
- 根据设置的超时时间来判断,是不是要跳过该master节点。
- 如果大于等于三个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
- 如果获取锁失败,解锁!
Redisson实现了redLock版本的锁,有兴趣的小伙伴,可以去了解一下哈~
论Redis分布式锁的正确使用姿势的更多相关文章
- 七种方案!探讨Redis分布式锁的正确使用姿势
前言 日常开发中,秒杀下单.抢红包等等业务场景,都需要用到分布式锁.而Redis非常适合作为分布式锁使用.本文将分七个方案展开,跟大家探讨Redis分布式锁的正确使用方式.如果有不正确的地方,欢迎大家 ...
- Redis全方位详解--数据类型使用场景和redis分布式锁的正确姿势
一.Redis数据类型 1.string string是Redis的最基本数据类型,一个key对应一个value,每个value最大可存储512M.string一半用来存图片或者序列化的数据. 2.h ...
- 【分布式缓存系列】集群环境下Redis分布式锁的正确姿势
一.前言 在上一篇文章中,已经介绍了基于Redis实现分布式锁的正确姿势,但是上篇文章存在一定的缺陷——它加锁只作用在一个Redis节点上,如果通过sentinel保证高可用,如果master节点由于 ...
- Redis分布式锁的正确姿势
1. 核心代码: import redis.clients.jedis.Jedis; import java.util.Collections; /** * @Author: qijigui * @C ...
- 掌握Redis分布式锁的正确姿势
本文中案例都会在上传到git上,请放心浏览 git地址:https://github.com/muxiaonong/Spring-Cloud/tree/master/order-lock 本文会使用到 ...
- Redis分布式锁的正确实现方式
前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...
- Redis(十三):Redis分布式锁的正确实现方式
前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...
- Redis分布式锁的正确实现方式(Java版)
前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...
- Redis 分布式锁的正确实现方式(转)
_ 前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各 ...
随机推荐
- funny 生成器
funny 生成器 https://www.zhihu.com/question/380741546/answer/1190570384 举牌小人生成器 https://small-upup.upup ...
- taro 禁用滚动事件
taro 禁用滚动事件 禁止 Modal 蒙层下面的页面的内容跟随滚动 https://github.com/NervJS/taro/issues/3980 https://github.com/Ne ...
- uniapp 发起网络请求
推荐下我写的uni-http 创建http-config.js import Vue from 'vue' const BASE_URL = 'http://xxx.com'; if (process ...
- CURTIS SAVANAH:数字经济=智能基础设施+海量数据+新生业态
前不久,Datahero Inc公司(公司编号:20141166945)创始人CURTIS SAVANAH在会议上表示,要构建数字经济的愿景,需要智能基础设施.海量数据和全新新生业态. 他在演讲中说到 ...
- DeFi 热潮下,NGK将成为下一个财富密码
区块链正在脱虚向实,处于大规模落地,赋能实体产业的前夜,而在这个关键的关口,一个万亿市场的蓝海正在缓缓生成,成为区块链落地的急先锋,这个先锋便是DeFi. DeFi,即Decentralized Fi ...
- 一次"内存泄漏"引发的血案
本文转载自一次"内存泄漏"引发的血案 导语 2017年末,手Q春节红包项目期间,为保障活动期间服务正常稳定,我对性能不佳的Ark Server进行了改造和重写.重编发布一段时间后, ...
- react新手入坑
1.vscode保存react项目的时候由于js-css-html插件格式化代码导致react代码缩进错误 解决方法:禁用js-css-html插件 2.react和vue不同,react方法的定义需 ...
- iOS写在定制相机之前
问题 不是所有的拍照UIImagePickerController都能搞定,理由如下: 1.产品不整点幺蛾子,哪来体验创新 2.设计不整点幺蛾子,怎能体现用心 3.运营:这体验跟某宝某信咋不一样??? ...
- 读懂RESTful风格
RESTful就是资源定位和资源操作的风格.不是标准也不是协议. REST即Representational State Transfer的缩写,可译为"表现层状态转化".REST ...
- python2与python3共存时的pip问题
在树莓派上同时安装有python2和python3,初始的pip是9.01版本,用pip install django只能安装到1.11版本,但是我需要2.0的django. 于是升级pip: pyt ...