题意

给一个长度为n的字符串,Q次询问,每次询问\((l,r,k)\) , 回答子串\(s_ls_{l+1}\cdots s_r\) 第\(k\) 次出现的位置,若不存在输出-1。\(n\le 1e5,Q\le 1e5\)

分析

查询子串第 k 次出现的位置,很容易想到要用处理字符串的有力工具——后缀数组。

那么该怎么用呢?我们先把样例的字符串的每个后缀排个序,然后对样例进行模拟

原串:aaabaabaaaab

排名 后缀 位置
1 aaaab 8
2 aaab 9
3 aaabaabaaab 1
4 aab 10
5 aabaaaab 5
6 aabaabaaab 2
7 ab 11
8 abaaaab 6
9 abaabaaaab 3
10 b 12
11 baaaab 7
12 baabaaaab 4

查询:[3,3], k = 4

[3,3]表示子串为 \(a\) ,我们可以找到起始位置为 3 的后缀 \(t = abaabaaab\) ,该后缀的第一个字符代表了当前要查询的子串,惊奇的发现,该子串又同时出现在了其他的一些后缀中,而这些后缀与\(t\) 的LCP(最长公共前缀)大于等于 1 。在这个例子中我们可以发现排名在9之前的后缀与 t 的LCP都大于1,所以只需要在这些后缀的开始位置中找第 k 大的即可。也就是在[8,9,1,10,5,2,11,6,3] 中找第 4 大,即 5.

查询:[2,3], k = 2

[2,3] 表示子串为\(aa\), 起始位置为2的后缀\(t = aabaabaaab\) , 与 \(t\) LCP 大于等于2的后缀的开始位置有[8,9,1,10,5,2] , 第2大的位置就是2。

那么怎么体现在程序中呢?

求出后缀数组的 \(rank,height\) 数组,利用\(ST\)表可以\(O(1)\) 查询两个后缀的LCP。

另外可以发现在后缀排名中,排名为 x 的后缀与其他后缀的LCP随着排名之差绝对值增大而减小,所以可以两次二分在排名中找到一个区间,使得这个区间内的所有后缀与目标后缀的LCP都大于等于查询的子串的长度。

找到这个区间之后,利用可持久化线段树找第 k 大值(对于sa数组)即可

复杂度分析:求后缀数组\(O(nlog(n))\) ,二分\(O(nlog(n))\) , 主席树查询第k大值\(O(nlog(n))\)

总复杂度\(O(nlog(n))\)

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
const int MAXN = N;
char s[N];
int sa[N],x[N],y[N],c[N],rk[N],h[N],n,q;
int len, cnt;
int a[MAXN];
int b[MAXN];
int t[MAXN];
int ls[MAXN * 40];
int rs[MAXN * 40];
int sum[MAXN * 40];
int build(int l, int r) {
int rt = ++cnt;
int mid = l + r >> 1;
sum[rt] = 0;
if(l < r) {
ls[rt] = build(l, mid);
rs[rt] = build(mid + 1, r);
}
return rt;
}
int add(int o, int l, int r, int k) {
int rt = ++cnt;
int mid = l + r >> 1;
ls[rt] = ls[o]; rs[rt] = rs[o]; sum[rt] = sum[o] + 1;
if(l < r)
if(k <= mid) ls[rt] = add(ls[o], l, mid, k);
else rs[rt] = add(rs[o], mid + 1, r, k);
return rt;
} int query(int ql, int qr, int l, int r, int k) {
int x = sum[ls[qr]] - sum[ls[ql]];
int mid = l + r >> 1;
if(l == r) return l;
if(x >= k) return query(ls[ql], ls[qr], l, mid, k);
else return query(rs[ql], rs[qr], mid + 1, r, k - x);
} void build_sa(char *s,int n,int m){
memset(c,0,sizeof c);
for(int i=1;i<=n;++i) ++c[x[i] = s[i]];
for(int i=2;i<=m;++i) c[i] += c[i-1];
for(int i=n;i>=1;--i) sa[c[x[i]]--] = i;
for(int k=1;k<=n;k<<=1){
int p = 0;
for(int i=n-k+1;i<=n;++i) y[++p] = i;
for(int i=1;i<=n;++i) if(sa[i] > k) y[++p] = sa[i]-k;
for(int i=1;i<=m;++i) c[i] = 0;
for(int i=1;i<=n;++i) ++c[x[i]];
for(int i=2;i<=m;++i) c[i] += c[i-1];
for(int i=n;i>=1;--i) sa[c[x[y[i]]]--] = y[i] , y[i] = 0;
swap(x,y);
x[sa[1]] = 1; p = 1;
for(int i=1;i<=n;++i)
x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i] + k] == y[sa[i-1]+k] ? p : ++p);
if(p >= n)break;
m = p;
}
}
void get_height(){
int k = 0;
for(int i=1;i<=n;++i)rk[sa[i]] = i;
for(int i=1;i<=n;++i){
if(rk[i] == 1)continue;
if(k) --k;
int j = sa[rk[i]-1];
while(j + k <= n && i + k <= n && s[i+k] == s[j+k])++k;
h[rk[i]] = k;
}
}
int mm[N];
int best[20][N];
void initRMQ(int n){
mm[0] = -1;
for(int i=1;i<=n;i++)
mm[i] = ((i & (i-1)) == 0) ? mm[i-1] + 1 : mm[i-1];
for(int i=1;i<=n;i++)best[0][i] = i;
for(int i=1;i<=mm[n];i++)
for(int j=1;j+(1<<i)-1<=n;j++){
int a = best[i-1][j];
int b = best[i-1][j+(1<<(i-1))];
if(h[a] < h[b])best[i][j] = a;
else best[i][j] = b;
}
}
int askRMQ(int a,int b){
int t = mm[b-a+1];
b -= (1<<t) - 1;
a = best[t][a];b = best[t][b];
return h[a] < h[b] ? a : b;
}
int lcp(int a,int b){
if(a == b)return n;
if(a > b)swap(a,b);
return h[askRMQ(a+1,b)];
}
int getL(int l,int r,int len,int x){
while(l < r){
int mid = l + r >> 1;
if(lcp(mid,x) < len) l = mid + 1;
else r = mid;
}
return l;
}
int getR(int l,int r,int len,int x){
while(l < r){
int mid = (l + r + 1) >> 1;
if(lcp(mid,x) < len) r = mid - 1;
else l = mid;
}
return l;
}
int getAns(int l,int r,int k){
return query(t[l - 1], t[r], 1, n, k);
}
int solve(int l,int r,int k){
int len = r - l + 1;
int L = getL(1,rk[l],len,rk[l]);//二分找区间左端点
int R = getR(rk[l],n,len,rk[l]);//二分找区间右端点
if(k > R-L+1) return -1;
return getAns(L,R,k);//返回主席树查询结果
}
int main(){
int T;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&q);
scanf("%s",s+1);
build_sa(s,n,150);
get_height();
initRMQ(n);
//初始化主席树
cnt = 0;
t[0] = build(1,n);
for(int i=1;i<=n;i++){
int tt = sa[i];
t[i] = add(t[i-1],1,n,tt);
}
while(q --){
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",solve(l,r,k));
}
}
return 0;
}

HDU-6704 K-th occurrence(后缀数组+主席树)的更多相关文章

  1. HDU - 6704 K-th occurrence (后缀数组+主席树/后缀自动机+线段树合并+倍增)

    题意:给你一个长度为n的字符串和m组询问,每组询问给出l,r,k,求s[l,r]的第k次出现的左端点. 解法一: 求出后缀数组,按照排名建主席树,对于每组询问二分或倍增找出主席树上所对应的的左右端点, ...

  2. [2019CCPC网络赛][hdu6704]K-th occurrence(后缀数组&&主席树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6704 题意为查询子串s[l...r]第k次出现的位置. 写完博客后5分钟的更新 写完博客才发现这份代码 ...

  3. BZOJ3473:字符串(后缀数组,主席树,二分,ST表)

    Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串. Output 一 ...

  4. [BZOJ4556][Tjoi2016&Heoi2016]字符串 后缀数组+主席树

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MB Description 佳媛姐姐过生日的时候,她的小 ...

  5. LOJ_#2720. 「NOI2018」你的名字 _后缀数组+主席树+倍增

    题面: https://loj.ac/problem/2720 考虑枚举T串的每个后缀i,我们要做两件事. 一.统计有多少子串[i,j]在S中要求位置出现. 二.去重. 第二步好做,相当于在后缀数组上 ...

  6. P5346 【XR-1】柯南家族(后缀数组+主席树)

    题目 P5346 [XR-1]柯南家族 做法 聪明性是具有传递性的,且排列是固定的 那么先预处理出每个点的名次,用主席树维护\(k\)大值 一眼平衡树,遍历的同时插入\(O(log^2n)\),总时间 ...

  7. BZOJ 5496: [2019省队联测]字符串问题 (后缀数组+主席树优化建图+拓扑排序)

    题意 略 分析 考场上写了暴力建图40分溜了-(结果只得了30分) 然后只要优化建边就行了 首先给出的支配关系无法优化,就直接A向它支配的B连边. 考虑B向以B作为前缀的所有A连边,做一遍后缀数组,两 ...

  8. [HEOI2016] 字符串 - 后缀数组,主席树,ST表,二分

    [HEOI2016] 字符串 Description 给定一个字符串 \(S\), 有 \(m\) 个询问,每个询问给定参数 \((a,b,c,d)\) ,求 \(s[a..b]\) 的子串与 \(s ...

  9. BZOJ4556:[TJOI\HEOI2016]字符串(后缀数组,主席树,二分,ST表)

    Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开箱 ...

随机推荐

  1. git的简单使用方式(基本操作部分)

    git的简单使用方式(基本操作部分) 1.简单介绍GIT的工作流程 git一般的工作流程: 克隆git的资源作为工作目录(一般会使用命令git clone进行克隆); 在克隆的资源上对文件进行增加或者 ...

  2. LeetCode解题Golang(1-10)

    前言 LeetCode题目个人答案(Golang版) 本篇预期记录 1-10 题, 持续更新 正文 1.两数之和(简单) https://leetcode-cn.com/problems/two-su ...

  3. wpf 中 Ellipse 对象对动画性能的影响

    vs2019 .NetFramework 4.8 win10-64 1909 接手一个wpf项目,某窗口中包含大量的 Shape 对象(线,矩形,圆形等). 这些内容要匀速的向左平移,类似于游戏&qu ...

  4. kubernets之卷

    一 卷的由来以及种类和常用的卷的类型 前面介绍了大部分都是pod的管理以及在集群内部和集群外部如何访问pod,但是我们也了解到,pod是有生命周期的,当pod所在节点下线,或者等其他原因原因导致pod ...

  5. dmp文件导入抽取方法

    一.确认dmp文件.oracle客户端和服务端的字符集 (1)dmp文件字符集确认: 使用UE打开dmp文件查看文件第2个和第3个字节内容,这两个字节记录了dmp文件的字符集.如0354,然后用以下s ...

  6. buuctf—web—Easy Calc

    启动靶机,查看网页源码,发现关键字 $("#content").val() 是什么意思: 获取id为content的HTML标签元素的值,是JQuery,     ("# ...

  7. uni-app开发经验分享六:页面跳转及提示框

    在我们开发的uni-app的过程中,页面跳转及提示框往往是我们做数据交互及结果反馈所要使用的功能,这里分享下我收集的一些方法及看法. 一:页面跳转 事件跳转 :指通过tap等事件来实现页面的跳转,跳转 ...

  8. 3、wait和waitpid

    1. 函数介绍 wait函数:调用该函数使进程阻塞,直到任意一个子进程结束,或者该进程接收到了一个信号为止,如果该进程没有子进程或该进程的子进程已经结束,wait函数立即返回. waitpid函数:与 ...

  9. 03. struts2中Action配置的各项默认值

    Action中的各项默认值 Action各项配置 <action name="helloworld" class="com.liuyong666.action.He ...

  10. 转 5 jmeter性能测试小小的实战

    5 jmeter性能测试小小的实战   项目描述 被测网址:www.sogou.com指标:相应时间以及错误率场景:线程数 20.Ramp-Up Period(in seconds) 10.循环次数 ...