LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)
有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次。有n个格子会单向传送到其他格子,G[i]表示从i传送到G[i]。
1和100不会有传送,一个格子也不会有两种传送。问走到100的期望值。
我们不难推出方程 但是由于dp值之间的前后影响 我们需要用高斯消元来解决
#include <bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int N = 1e5+7;
const double eps = 1e-8;
int G[107];
double A[207][107],x[107];//A矩阵中每一行1~n存系数,n+1为答案,m个方程m行,x是最终的答案
//注意空间要多开几个,还要考虑n,m不同的情况
int Guass(int n,int m)//有n个未知数,m个方程
{
int i=1,j=1,k,r,c;
while(i<=m && j<=n)//正在处理第i个方程,解第j个未知数
{
r=i;//找到绝对值最大的系数,防止除数为0的情况,使得其他方程组系数不会变得太大
for(k=i+1;k<=m;k++)if(fabs(A[k][j])>fabs(A[r][j]))r=k;
if(fabs(A[r][j])>=eps)//出现为0的情况,说明此项已经被消掉了,直接用进行下一个未知数,而方程不变,不过这个时候,一般来说跳过的这个元素就没有固定解啦
{
for(c=1;c<=n+1;c++)swap(A[i][c],A[r][c]);//交换
for(k=i+1;k<=m;k++)if(fabs(A[k][j])>=eps)
{
double f=A[k][j]/A[i][j];
for(c=j;c<=n+1;c++)//当前方程j前面的系数都是0
A[k][c]-=f*A[i][c];
}
i++;//获取下一个方程
}
j++;//去消下一个未知数
}
//必须先判无解再判断多解
for(k=i;k<=m;k++)if(fabs(A[k][n+1])>=eps)return 0;//若有一行系数为0但是不为答案,则无解
if(i<=n)return 2;//如果被你处理出来的方程没有n个,就会出现多解。(i=n表示解决了n-1个方程)
for(int i=n;i>=1;i--)
{
for(j=i+1;j<=n;j++)
A[i][n+1]-=A[i][j]*x[j];
x[i]=A[i][n+1]/A[i][i];
}
//最终统计出来的答案x[i]肯定是对应的第i个元素的解哦,换的只是方程的顺序
return 1;//拥有唯一解
}
int main(){
// ios::sync_with_stdio(false);
// cin.tie(0);
int t;
scanf("%d",&t);
int w=0;
while(t--){
memset(G,0,sizeof(G));
memset(A,0,sizeof(A));
memset(x,0,sizeof(x));
int n; scanf("%d",&n);
for(int i=1;i<=n;i++){
int a,b; scanf("%d%d",&a,&b);
G[a]=b;
}
A[100][100]=1;
A[100][101]=0;
for(int i=1;i<=99;i++){
if(G[i]){
A[i][i]=1;
A[i][G[i]]=-1;
A[i][101]=0;
}else{
int top=min(6,100-i);
for(int j=1;j<=top;j++){
A[i][i+j]=-1;
}
A[i][i]=top;
A[i][101]=6;
}
}
Guass(100,101);
printf("Case %d: %.10f\n",++w,x[1]);
}
}
LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)的更多相关文章
- LightOJ 1151 Snakes and Ladders 期望dp+高斯消元
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定 而且 ...
- LightOJ - 1151概率dp+高斯消元
概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- BZOJ3270 博物館 概率DP 高斯消元
BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
- 【BZOJ3640】JC的小苹果 概率DP+高斯消元
[BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...
- Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)
Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...
- LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)
题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...
随机推荐
- netty核心组件之channel、handler、ChannelHandlerContext、pipeline
channel介绍: netty中channel分为NioServerScoketChannel和NioSocketChannel,分别对应java nio中的ServerScoketChannel和 ...
- uber_go_guide解析(二)
前言 接上回 正文 错误消息 Go中声明错误有几种方式 errors.New() 简单的声明静态字符串信息的错误 fmt.Errorf 可以格式化插入信息的错误 自己实现 Error() 方法 使用e ...
- 利用DES,C#加密,Java解密代码
//C#加密 /// <summary> /// 进行DES加密. /// </summary> /// <param name="pToEncrypt&quo ...
- (十六)re模块
正则表达式并不是Python的一部分,本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言.正则表达式是用于处理字符串的强大工具,很多编程语言都支持正则表达式的语法. 字符匹配分为普通字 ...
- linux系统Vsftpd搭建FTP
安装vsftp 使用yum命令安装vsftp #yum install vsftpd -y 添加ftp帐号和目录 先检查下nologin的位置,通常在/usr/sbin/nologin下 (*no ...
- Java设计模式精讲之UML急速入门
简单记录 - 慕课网 - Java设计模式精讲 Debug方式+内存分析 文章目录 第2章 UML急速入门 2-1.UML简单入门 UML定义 UML特点 UML 2.2分类 UML类图 理解泛化.实 ...
- 【Software Test】Introduction to Software Testing
Introduction to Software Testing 文章目录 Going to Learn --. Evolution of The Software Industry Errors, ...
- ps的参数解释
[root@bogon ~]# ps axuUSER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND user启动进程的用户 pid 表示进程标志 ...
- 使用 gRPCurl 调试.NET 5的gPRC服务
介绍 你用过 Curl 吗?这个工具允许你通过 http 来发送数据,现在有一个适用于gGRPC的工具,gRPCurl,在本文中,我将介绍如何下载安装这个工具,然后通过这个工具调试我们.NET 5上面 ...
- 登陆到 SAP 系统后的用户出口
增强类型:smod 增强名称:SUSR0001 组件(退出功能模块):EXIT_SAPLSUSF_001 功能:用户每次登陆SAP系统后都会调用这个SUSR0001增强,可以在FUNCTION EXI ...