1、什么是JUC

源码 + 官方文档 面试高频问!

java.util 工具包、包、分类

业务:普通的线程代码 Thread

Runnable 没有返回值、效率相比入 Callable 相对较低!

2、线程和进程

进程:一个程序,QQ.exe Music.exe 程序的集合;一个进程往往可以包含多个线程,至少包含一个!

Java默认有几个线程? 2 个 mian、GC

线程:开了一个进程 Typora,写字,自动保存(线程负责的)

对于Java而言:Thread、Runnable、Callable

Java 真的可以开启线程吗? 开不了

public synchronized void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0)
throw new IllegalThreadStateException(); /* Notify the group that this thread is about to be started
* so that it can be added to the group's list of threads
* and the group's unstarted count can be decremented. */
group.add(this); boolean started = false;
try {
start0();
started = true;
} finally {
try {
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
/* do nothing. If start0 threw a Throwable then
it will be passed up the call stack */
}
}
} // 本地方法,底层的C++ ,Java 无法直接操作硬件
private native void start0();

并发、并行

并发编程:并发、并行

并发(多线程操作同一个资源)

  • CPU 一核 ,模拟出来多条线程,天下武功,唯快不破,快速交替并行(多个人一起行走)
  • CUP多核,多个线程可以同时进行,线程池
public class LockTest {
public static void main(String[] args) {
System.out.println(Runtime.getRuntime().availableProcessors());
}
}

并发编程的本质:充分的利用CPU的资源。

线程有几个状态

public enum State {
/**
* 新建
*/
NEW, /**
* 运行
*/
RUNNABLE, /**
* 阻塞
*/
BLOCKED, /**
* 等待,死死的等
*/
WAITING, /**
* 超时等待
*/
TIMED_WAITING, /**
* 终止
*/
TERMINATED;
}

wait/sleep 区别

wait => Object sleep => Thread

1、 关于锁的释放wait 会释放锁,sleep 睡觉了,抱着锁睡觉,不会释放!

2、 使用的范围是不同的

wait:必须在同步代码块中.

sleep 可以再任何地方睡

3、是否需要捕获异常

wait 不需要捕获异常 sleep 必须要捕获异常

3、Lock锁(重点)

传统 Synchronized

// 基本的卖票例子
import java.time.OffsetDateTime; /**
* 真正的多线程开发,公司中的开发,降低耦合性
* 线程就是一个单独的资源类,没有任何附属的操作!
* 1、 属性、方法
*/
public class SaleTicketDemo01 {
public static void main(String[] args) {
// 并发:多线程操作同一个资源类, 把资源类丢入线程
Ticket ticket = new Ticket(); // @FunctionalInterface 函数式接口,jdk1.8 lambda表达式 (参数)->{ 代码 }
new Thread(()->{
for (int i = 1; i < 40 ; i++) {
ticket.sale();
}
},"A").start(); new Thread(()->{
for (int i = 1; i < 40 ; i++) {
ticket.sale();
}
},"B").start(); new Thread(()->{
for (int i = 1; i < 40 ; i++) {
ticket.sale();
}
},"C").start();
}
} // 资源类 OOP
class Ticket {
// 属性、方法
private int number = 30; // 卖票的方式
// synchronized 本质: 队列,锁
public synchronized void sale(){
if (number>0){
System.out.println(Thread.currentThread().getName()+"卖出了"+(number--)+"票,剩余:"+number);
}
}
}

Lock接口

公平锁:十分公平:可以先来后到非公平锁:十分不公平:可以插队 (默认)

public class SaleTicketDemo02  {
public static void main(String[] args) { // 并发:多线程操作同一个资源类, 把资源类丢入线程
Ticket2 ticket = new Ticket2(); // @FunctionalInterface 函数式接口,jdk1.8 lambda表达式 (参数)->{ 代码 }
new Thread(()->{for (int i = 1; i < 40 ; i++) ticket.sale();},"A").start();
new Thread(()->{for (int i = 1; i < 40 ; i++) ticket.sale();},"B").start();
new Thread(()->{for (int i = 1; i < 40 ; i++) ticket.sale();},"C").start();
}
} // Lock三部曲
// 1、 new ReentrantLock();
// 2、 lock.lock(); // 加锁
// 3、 finally=> lock.unlock(); // 解锁
class Ticket2 {
// 属性、方法
private int number = 30; Lock lock = new ReentrantLock(); public void sale(){ lock.lock(); // 加锁
try {
// 业务代码
if (number>0){
System.out.println(Thread.currentThread().getName()+"卖出了"+(number--)+"票,剩余:"+number);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock(); // 解锁
}
}
}

Synchronized 和 Lock 区别

1、 Synchronized 内置的Java关键字, Lock 是一个Java类

2、 Synchronized 无法判断获取锁的状态,Lock 可以判断是否获取到了锁

3、 Synchronized 会自动释放锁,lock 必须要手动释放锁!如果不释放锁,死锁

4、 Synchronized 线程 1(获得锁,阻塞)、线程2(等待,傻傻的等);Lock锁就不一定会等待下去;

5、 Synchronized 可重入锁,不可以中断的,非公平;Lock ,可重入锁,可以 判断锁,非公平(可以自己设置);

6、 Synchronized 适合锁少量的代码同步问题,Lock 适合锁大量的同步代码!

4、生产者和消费者问题

面试的:单例模式、排序算法、生产者和消费者、死锁

生产者和消费者问题 Synchronized版

问题存在,A B C D 4 个线程! 虚假唤醒,所以不能使用if-else,因为if只能判断一次,当第二个线程也进来的话,就不会判断了,需要改成while

结论:就是用if判断的话,唤醒后线程会从wait之后的代码开始运行,但是不会重新判断if条件,直接继续运行if代码块之后的代码,而如果使用while的话,也会从wait之后的代码运行,但是唤醒后会重新判断循环条件,如果不成立再执行while代码块之后的代码块,成立的话继续wait。

/**
* 线程之间的通信问题:生产者和消费者问题! 等待唤醒,通知唤醒
* 线程交替执行 A B 操作同一个变量 num = 0
* A num+1
* B num-1
*/
public class A {
public static void main(String[] args) {
Data data = new Data(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"A").start(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"B").start(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"C").start(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"D").start();
}
} // 判断等待,业务,通知
class Data{ // 数字 资源类 private int number = 0; //+1
public synchronized void increment() throws InterruptedException {
while (number!=0){ //0
// 等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
// 通知其他线程,我+1完毕了
this.notifyAll();
} //-1
public synchronized void decrement() throws InterruptedException {
while (number==0){ // 1
// 等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
// 通知其他线程,我-1完毕了
this.notifyAll();
}
}

JUC版的生产者和消费者问题



代码实现:

public class B  {
public static void main(String[] args) {
Data2 data = new Data2(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"A").start(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"B").start(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"C").start(); new Thread(()->{
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"D").start(); }
} // 判断等待,业务,通知
class Data2{ // 数字 资源类 private int number = 0; Lock lock = new ReentrantLock();
Condition condition = lock.newCondition(); //condition.await(); // 等待
//condition.signalAll(); // 唤醒全部
//+1
public void increment() throws InterruptedException {
lock.lock();
try {
// 业务代码
while (number!=0){ //0
// 等待
condition.await();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
// 通知其他线程,我+1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
} //-1
public synchronized void decrement() throws InterruptedException {
lock.lock();
try {
while (number==0){ // 1
// 等待
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
// 通知其他线程,我-1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}

任何一个新的技术,绝对不是仅仅只是覆盖了原来的技术,优势和补充!

Condition 精准的通知和唤醒线程

代码测试:

/**
* A 执行完调用B,B执行完调用C,C执行完调用A
*/
public class C { public static void main(String[] args) {
Data3 data = new Data3(); new Thread(()->{
for (int i = 0; i <10 ; i++) {
data.printA();
}
},"A").start(); new Thread(()->{
for (int i = 0; i <10 ; i++) {
data.printB();
}
},"B").start(); new Thread(()->{
for (int i = 0; i <10 ; i++) {
data.printC();
}
},"C").start();
} } class Data3{ // 资源类 Lock private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int number = 1; // 1A 2B 3C public void printA(){
lock.lock();
try {
// 业务,判断-> 执行-> 通知
while (number!=1){
// 等待
condition1.await();
}
System.out.println(Thread.currentThread().getName()+"=>AAAAAAA");
// 唤醒,唤醒指定的人,B
number = 2;
condition2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
} public void printB(){
lock.lock();
try {
// 业务,判断-> 执行-> 通知
while (number!=2){
condition2.await();
}
System.out.println(Thread.currentThread().getName()+"=>BBBBBBBBB");
// 唤醒,唤醒指定的人,c
number = 3;
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printC(){
lock.lock();
try {
// 业务,判断-> 执行-> 通知
// 业务,判断-> 执行-> 通知
while (number!=3){
condition3.await();
}
System.out.println(Thread.currentThread().getName()+"=>BBBBBBBBB");
// 唤醒,唤醒指定的人,c
number = 1;
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
} }

5、8锁现象

6、集合类不安全

List 不安全

// java.util.ConcurrentModificationException 并发修改异常!
public class ListTest {
public static void main(String[] args) {
// 并发下 ArrayList 不安全的吗,Synchronized;
/**
* 解决方案;
* 1、List<String> list = new Vector<>();
* 使用synchronized实现的
* 2、List<String> list = Collections.synchronizedList(new ArrayList<>());
* 使用synchronized实现的
* 3、List<String> list = new CopyOnWriteArrayList<>();
* CopyOnWrite 写入时复制 COW 计算机程序设计领域的一种优化策略;
*/
// 多个线程调用的时候,list,读取的时候,固定的,写入(覆盖)
// 在写入的时候避免覆盖,造成数据问题!
// 读写分离
// CopyOnWriteArrayList 比 Vector Nb 在哪里? List<String> list = new CopyOnWriteArrayList<>(); for (int i = 1; i <= 10; i++) {
new Thread(()->{
list.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(list);
},String.valueOf(i)).start();
}
}
}

Set 不安全

/**
* 同理可证 : ConcurrentModificationException
* //1、Set<String> set = Collections.synchronizedSet(new HashSet<>());
*/
public class SetTest {
public static void main(String[] args) {
// Set<String> set = new HashSet<>();
// hashmap
// Set<String> set = Collections.synchronizedSet(new HashSet<>());
Set<String> set = new CopyOnWriteArraySet<>(); for (int i = 1; i <=30 ; i++) {
new Thread(()->{
set.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(set);
},String.valueOf(i)).start();
}
}
}

Map 不安全

map底层源码

// ConcurrentModificationException
public class MapTest { public static void main(String[] args) {
// map 是这样用的吗? 不是,工作中不用 HashMap
// 默认等价于什么? new HashMap<>(16,0.75);
// Map<String, String> map = new HashMap<>();
// 唯一的一个家庭作业:研究ConcurrentHashMap的原理
Map<String, String> map = new ConcurrentHashMap<>(); for (int i = 1; i <=30; i++) {
new Thread(()->{
map.put(Thread.currentThread().getName(),UUID.randomUUID().toString().substring(0,5));
System.out.println(map);
},String.valueOf(i)).start();
}
}
}

7、Callable ( 简单 )

该方法创建线程和Runnable有什么区别呢?

1、 可以有返回值

2、 可以抛出异常

3、 方法不同,run()/ call()

/**
* 1、探究原理
* 2、觉自己会用
*/
public class CallableTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// new Thread(new Runnable()).start();
// new Thread(new FutureTask<V>()).start();
// new Thread(new FutureTask<V>( Callable )).start();
new Thread().start(); // 怎么启动Callable MyThread thread = new MyThread();
FutureTask futureTask = new FutureTask(thread); // 适配类 new Thread(futureTask,"A").start();
new Thread(futureTask,"B").start(); // 结果会被缓存,效率高 Integer o = (Integer) futureTask.get(); //这个get方法是获取返回值,但是可能会产生阻塞!所以把他放到最后
// 或者使用异步通信来处理!
System.out.println(o);
}
} class MyThread implements Callable<Integer> { @Override
public Integer call() {
System.out.println("call()"); // 会打印几个call
// 耗时的操作
return 1024;
}
}

细节:

1、 有缓存

2、 结果可能需要等待,会阻塞!

8、常用的辅助类(必会)

8.1、CountDownLatch

// 计数器
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
// 总数是6,必须要执行任务的时候,再使用!
CountDownLatch countDownLatch = new CountDownLatch(6); for (int i = 1; i <=6 ; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName()+" Go out");
countDownLatch.countDown(); // 数量-1
},String.valueOf(i)).start();
} countDownLatch.await(); // 等待计数器归零,然后再向下执行 System.out.println("Close Door"); }
}

原理:每次有线程调用 countDown() 数量-1,假设计数器变为0,countDownLatch.await() 就会被唤醒,继续执行!

8.2、CyclicBarrier

加法计数器:需要两个参数,一个是要到达的值,一个是要执行的内容。

public class CyclicBarrierDemo {
public static void main(String[] args) {
/**
* 集齐7颗龙珠召唤神龙
*/
// 召唤龙珠的线程
CyclicBarrier cyclicBarrier = new CyclicBarrier(8,()->{
System.out.println("召唤神龙成功!");
}); for (int i = 1; i <=8 ; i++) {
final int temp = i;
// lambda能操作到 i 吗
new Thread(()->{
System.out.println(Thread.currentThread().getName()+"收集"+temp+"个龙珠");
try {
cyclicBarrier.await(); // 等待
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}

8.3、Semaphore

Semaphore:信号量

抢车位!

6车---3个停车位置

public class SemaphoreDemo {
public static void main(String[] args) {
// 线程数量:停车位! 限流!
Semaphore semaphore = new Semaphore(3); for (int i = 1; i <=6 ; i++) {
new Thread(()->{
// acquire() 得到
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName()+"抢到车位");
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName()+"离开车位");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release(); // release() 释放
} },String.valueOf(i)).start();
}
}
}

原理:假设如果已经满了,等待,等待被释放为止! semaphore.release(); 释放,会将当前的信号量释放 + 1,然后唤醒等待的线程!作用: 多个共享资源互斥的使用!并发限流,控制 大的线程数!

9、阻塞队列



BlockingQueue BlockingQueue 不是新的东西,是之前就有的

什么情况下我们会使用 阻塞队列:多线程并发处理,线程池!学会使用队列添加、移除四组API

方式 抛出异常 有返回值,不抛出异常 阻塞 等待 超时等待
添加 add offer() put() offer(,,)
移除 remove poll() take() poll(,)
检测队首元素 element peek - -
public class Test {
public static void main(String[] args) throws InterruptedException {
test4();
}
/**
* 添加不上去就抛出异常
*/
public static void test1(){
// 队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); System.out.println(blockingQueue.add("a"));
System.out.println(blockingQueue.add("b"));
System.out.println(blockingQueue.add("c"));
// IllegalStateException: Queue full 抛出异常!
// System.out.println(blockingQueue.add("d")); System.out.println("=-==========="); System.out.println(blockingQueue.element()); // 查看队首元素是谁
System.out.println(blockingQueue.remove()); // remove方法移除队首元素 System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove()); // java.util.NoSuchElementException 抛出异常!
// System.out.println(blockingQueue.remove());
} /**
* 有返回值,没有异常
*/
public static void test2(){
// 队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); System.out.println(blockingQueue.offer("a"));
System.out.println(blockingQueue.offer("b"));
System.out.println(blockingQueue.offer("c")); System.out.println(blockingQueue.peek());
// System.out.println(blockingQueue.offer("d")); // false 不抛出异常!
System.out.println("============================");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll()); // null 不抛出异常!
} /**
* 等待,阻塞(一直阻塞)
*/
public static void test3() throws InterruptedException {
// 队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); // 一直阻塞
blockingQueue.put("a");
blockingQueue.put("b");
blockingQueue.put("c");
// blockingQueue.put("d"); // 队列没有位置了,一直阻塞
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take()); // 没有这个元素,一直阻塞
} /**
* 等待,阻塞(等待超时)
*/
public static void test4() throws InterruptedException {
// 队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); blockingQueue.offer("a");
blockingQueue.offer("b");
blockingQueue.offer("c");
// blockingQueue.offer("d",2,TimeUnit.SECONDS); // 等待超过2秒就退出
System.out.println("===============");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
blockingQueue.poll(2,TimeUnit.SECONDS); // 等待超过2秒就退出
}
}

SynchronousQueue 同步队列

没有容量,进去一个元素,必须等待取出来之后,才能再往里面放一个元素!

put、take

/**
* 同步队列
* 和其他的BlockingQueue 不一样, SynchronousQueue 不存储元素
* put了一个元素,必须从里面先take取出来,否则不能在put进去值!
*/
public class SynchronousQueueDemo {
public static void main(String[] args) {
BlockingQueue<String> blockingQueue = new SynchronousQueue<>(); // 同步队列 new Thread(()->{
try {
System.out.println(Thread.currentThread().getName()+" put 1");
blockingQueue.put("1");
System.out.println(Thread.currentThread().getName()+" put 2");
blockingQueue.put("2");
System.out.println(Thread.currentThread().getName()+" put 3");
blockingQueue.put("3");
//添加多个不报错
blockingQueue.put("4");
blockingQueue.put("5");
} catch (InterruptedException e) {
e.printStackTrace();
}
},"T1").start(); new Thread(()->{
try {
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+"=>"+blockingQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+"=>"+blockingQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+"=>"+blockingQueue.take());
//取空的值不报错
// System.out.println(Thread.currentThread().getName()+"取空的值=>"+blockingQueue.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
},"T2").start();
}
}

10、线程池(重点)

线程池:三大方法、7大参数、4种拒绝策略

池化技术

程序的运行,本质:占用系统的资源! 优化资源的使用!=>池化技术线程池、连接池、内存池、对象池///..... 创建、销毁。十分浪费资源

池化技术:事先准备好一些资源,有人要用,就来我这里拿,用完之后还给我。

线程池的好处:

1、 降低资源的消耗

2、 提高响应的速度

3、 方便管理。

线程复用、可以控制最大并发数、管理线程

线程池:三大方法

// Executors 工具类、3大方法
public class Demo02 { public static void main(String[] args) {
//单个线程
// ExecutorService threadPool = Executors.newSingleThreadExecutor();
//创建一个固定的线程池大小
// ExecutorService threadPool = Executors.newFixedThreadPool(5);
//可伸缩的线程池,遇强则强,遇弱则弱
ExecutorService threadPool = Executors.newCachedThreadPool(); try {
// 最大承载:Deque + max
// 超过 RejectedExecutionException
for (int i = 1; i <= 25; i++) {
// 使用了线程池之后,使用线程池来创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName()+" ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}

7大参数

源码分析:

    public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
} public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
} public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
} //ThreadPoolExecutor源码分析
public ThreadPoolExecutor(int corePoolSize, //核心线程池大小
int maximumPoolSize,//最大核心线程池大小
long keepAliveTime,//超时了没有人调用就会释放
TimeUnit unit,//超时单位
BlockingQueue<Runnable> workQueue,//阻塞队列
ThreadFactory threadFactory,//线程工厂,一般不用动
RejectedExecutionHandler handler //拒绝策略) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}

手动创建一个线程池

// Executors 工具类、3大方法

/**
* new ThreadPoolExecutor.AbortPolicy() // 银行满了,还有人进来,不处理这个人的,抛出异常
* new ThreadPoolExecutor.CallerRunsPolicy() // 哪来的去哪里!
* new ThreadPoolExecutor.DiscardPolicy() //队列满了,丢掉任务,不会抛出异常!
* new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
*/
public class Demo01 {
public static void main(String[] args) {
// 自定义线程池!工作 ThreadPoolExecutor // 最大线程到底该如何定义
// 1、CPU 密集型,几核,就是几,可以保持CPu的效率最高!
// 2、IO 密集型 > 判断你程序中十分耗IO的线程,
// 程序 15个大型任务 io十分占用资源! // 获取CPU的核数
System.out.println(Runtime.getRuntime().availableProcessors()); List list = new ArrayList(); ExecutorService threadPool = new ThreadPoolExecutor(
2,
Runtime.getRuntime().availableProcessors(),
3,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()); //队列满了,尝试去和最早的竞争,也不会抛出异常!
try {
// 最大承载:Deque + max 队列的值+最大承载的值
// 超过 RejectedExecutionException
for (int i = 1; i <= 9; i++) {
// 使用了线程池之后,使用线程池来创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName()+" ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}

4种拒绝策略

/**
* new ThreadPoolExecutor.AbortPolicy() // 银行满了,还有人进来,不处理这个人的,抛出异常
* new ThreadPoolExecutor.CallerRunsPolicy() // 哪来的去哪里!
* new ThreadPoolExecutor.DiscardPolicy() //队列满了,丢掉任务,不会抛出异常!
* new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
*/

小结和拓展

池的 大的大小如何去设置!

了解:IO密集型,CPU密集型:(调优)

// 1、CPU 密集型,几核,就是几,可以保持CPu的效率最高!
// 2、IO 密集型 > 判断你程序中十分耗IO的线程,
// 程序 15个大型任务 io十分占用资源!

11、四大函数式接口(必需掌握)

新时代的程序员:lambda表达式、链式编程、函数式接口、Stream流式计算

函数式接口: 只有一个方法的接口

@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}

Function函数式接口

/**
* Function 函数型接口, 有一个输入参数,有一个输出
* 只要是 函数型接口 可以 用 lambda表达式简化
*/
public class Demo01 {
public static void main(String[] args) {
//
// Function<String,String> function = new Function<String,String>() {
// @Override
// public String apply(String str) {
// return str;
// }
// }; Function<String,String> function = str->{return str;}; System.out.println(function.apply("asd"));
}
}

断定型接口:有一个输入参数,返回值只能是 布尔值!

/**
* 断定型接口:有一个输入参数,返回值只能是 布尔值!
*/
public class Demo02 {
public static void main(String[] args) {
// 判断字符串是否为空
// Predicate<String> predicate = new Predicate<String>(){
//// @Override
//// public boolean test(String str) {
//// return str.isEmpty();
//// }
//// }; Predicate<String> predicate = (str)->{return str.isEmpty(); };
System.out.println(predicate.test(""));
}
}

Consumer 消费型接口

/**
* Consumer 消费型接口: 只有输入,没有返回值
*/
public class Demo03 {
public static void main(String[] args) {
// Consumer<String> consumer = new Consumer<String>() {
// @Override
// public void accept(String str) {
// System.out.println(str);
// }
// };
Consumer<String> consumer = (str)->{System.out.println(str);};
consumer.accept("sdadasd");
}
}

Supplier 供给型接口

/**
* Supplier 供给型接口 没有参数,只有返回值
*/
public class Demo04 {
public static void main(String[] args) {
// Supplier supplier = new Supplier<Integer>() {
// @Override
// public Integer get() {
// System.out.println("get()");
// return 1024;
// }
// }; Supplier supplier = ()->{ return 1024; };
System.out.println(supplier.get());
}
}

12、Stream流式计算

什么是Stream流式计算

大数据:存储 + 计算

集合、MySQL 本质就是存储东西的;计算都应该交给流来操作!

/**
* 题目要求:一分钟内完成此题,只能用一行代码实现!
* 现在有5个用户!筛选:
* 1、ID 必须是偶数
* 2、年龄必须大于23岁
* 3、用户名转为大写字母
* 4、用户名字母倒着排序
* 5、只输出一个用户!
*/
public class Test {
public static void main(String[] args) {
User u1 = new User(1,"a",21);
User u2 = new User(2,"b",22);
User u3 = new User(3,"c",23);
User u4 = new User(4,"d",24);
User u5 = new User(6,"e",25);
// 集合就是存储
List<User> list = Arrays.asList(u1, u2, u3, u4, u5); // 计算交给Stream流
// lambda表达式、链式编程、函数式接口、Stream流式计算
list.stream()
.filter(u->{return u.getId()%2==0;})
.filter(u->{return u.getAge()>23;})
.map(u->{return u.getName().toUpperCase();})
.sorted((uu1,uu2)->{return uu2.compareTo(uu1);})
.limit(1)
.forEach(System.out::println);
}
}

13、ForkJoin

什么是 ForkJoin

ForkJoin 在 JDK 1.7出现, 并行执行任务!提高效率。大数据量!大数据:Map Reduce (把大任务拆分为小任务)

ForkJoin 特点:工作窃取

这个里面维护的都是双端队列

/**
* 求和计算的任务!
* 3000 6000(ForkJoin) 9000(Stream并行流)
* // 如何使用 forkjoin
* // 1、forkjoinPool 通过它来执行
* // 2、计算任务 forkjoinPool.execute(ForkJoinTask task)
* // 3. 计算类要继承 ForkJoinTask
*/
public class ForkJoinDemo extends RecursiveTask<Long> { private Long start; // 1
private Long end; // 1990900000 // 临界值
private Long temp=10000l; public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
// this.temp= (start + end) / 2;
} // 计算方法
@Override
protected Long compute() {
if ((end-start)<temp){
Long sum = 0L;
for (Long i = start; i <= end; i++) {
sum += i;
}
return sum;
}else { // forkjoin 递归
long middle = (start + end) / 2; // 中间值
ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
task1.fork(); // 拆分任务,把任务压入线程队列
ForkJoinDemo task2 = new ForkJoinDemo(middle+1, end);
task2.fork(); // 拆分任务,把任务压入线程队列
return task1.join() + task2.join();
}
}
}

测试:

public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// test1(); // 7185
// test2(); // 10038
test3(); // 153
} // 普通程序员
public static void test1(){
Long sum = 0L;
long start = System.currentTimeMillis();
for (Long i = 1L; i <= 10_0000_0000; i++) {
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("sum="+sum+" 时间:"+(end-start));
} // 会使用ForkJoin
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis(); ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(task);// 提交任务
Long sum = submit.get(); long end = System.currentTimeMillis(); System.out.println("sum="+sum+" 时间:"+(end-start));
} public static void test3(){
long start = System.currentTimeMillis();
// Stream并行流 () (]
long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, (a,b)->{return a+b;});
long end = System.currentTimeMillis();
System.out.println("sum="+sum+"时间:"+(end-start));
}
}

14、异步回调

15、JMM

请你谈谈你对 Volatile 的理解

Volatile 是 Java 虚拟机提供轻量级的同步机制

1、 保证可见性

2、 不保证原子性

3、 禁止指令重排

什么是JMM

JMM : Java内存模型,不存在的东西,概念!约定!

关于JMM的一些同步的约定:

1、 线程解锁前,必须把共享变量立刻刷回主存。

2、 线程加锁前,必须读取主存中的 新值到工作内存中!

3、 加锁和解锁是同一把锁

线程 工作内存主内存

内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可在分的(对于doublelong类型的变量来说,loadstorereadwrite操作在某些平台上允许例外)lock (锁定):作用于主内存的变量,把一个变量标识为线程独占状态 unlock (解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定

read (读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用 load (载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中 use (使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令 assign (赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中

store (存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用

write (写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中

16、彻底玩转单例模式

饿汉式 DCL懒汉式,深究!

饿汉式

// 饿汉式单例
public class Hungry { // 可能会浪费空间
private byte[] data1 = new byte[1024*1024];
private byte[] data2 = new byte[1024*1024];
private byte[] data3 = new byte[1024*1024];
private byte[] data4 = new byte[1024*1024]; private Hungry(){ } private final static Hungry HUNGRY = new Hungry(); public static Hungry getInstance(){
return HUNGRY;
} }

DCL 懒汉式

// 懒汉式单例
// 道高一尺,魔高一丈!
public class LazyMan { private static boolean qinjiang = false; private LazyMan(){
synchronized (LazyMan.class){
if (qinjiang == false){
qinjiang = true;
}else {
throw new RuntimeException("不要试图使用反射破坏异常");
}
}
} private volatile static LazyMan lazyMan; // 双重检测锁模式的 懒汉式单例 DCL懒汉式
public static LazyMan getInstance(){
if (lazyMan==null){
synchronized (LazyMan.class){
if (lazyMan==null){
lazyMan = new LazyMan(); // 不是一个原子性操作
}
}
}
return lazyMan;
} // 反射!
public static void main(String[] args) throws Exception {
// LazyMan instance = LazyMan.getInstance();
Field qinjiang = LazyMan.class.getDeclaredField("qinjiang");
qinjiang.setAccessible(true); Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null);
declaredConstructor.setAccessible(true);
LazyMan instance = declaredConstructor.newInstance(); qinjiang.set(instance,false); LazyMan instance2 = declaredConstructor.newInstance(); System.out.println(instance);
System.out.println(instance2);
}
}

静态内部类

// 静态内部类
public class Holder {
private Holder(){
} public static Holder getInstace(){
return InnerClass.HOLDER;
} public static class InnerClass{
private static final Holder HOLDER = new Holder();
}
}

枚举

// enum 是一个什么? 本身也是一个Class类
public enum EnumSingle { INSTANCE; public EnumSingle getInstance(){
return INSTANCE;
}
} class Test{ public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
EnumSingle instance1 = EnumSingle.INSTANCE;
Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(String.class,int.class);
declaredConstructor.setAccessible(true);
EnumSingle instance2 = declaredConstructor.newInstance(); // NoSuchMethodException: com.kuang.single.EnumSingle.<init>()
System.out.println(instance1);
System.out.println(instance2);
}
}

JUC使用的更多相关文章

  1. Java多线程系列--“JUC锁”03之 公平锁(一)

    概要 本章对“公平锁”的获取锁机制进行介绍(本文的公平锁指的是互斥锁的公平锁),内容包括:基本概念ReentrantLock数据结构参考代码获取公平锁(基于JDK1.7.0_40)一. tryAcqu ...

  2. Java多线程系列--“JUC锁”04之 公平锁(二)

    概要 前面一章,我们学习了“公平锁”获取锁的详细流程:这里,我们再来看看“公平锁”释放锁的过程.内容包括:参考代码释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系 ...

  3. 【目录】JUC锁框架目录

    JUC锁框架的目录整理如下: 1. [JUC]JUC锁框架综述 2. [JUC]JDK1.8源码分析之LockSupport(一) 3. [JUC]JDK1.8源码分析之AbstractQueuedS ...

  4. 【目录】JUC集合框架目录

    JUC集合框架的目录整理如下: 1. [JUC]JUC集合框架综述 2. [JUC]JDK1.8源码分析之ConcurrentHashMap(一) 3. [JUC]JDK1.8源码分析之Concurr ...

  5. java多线程系类:JUC原子类:01之框架

    本系列内容全部来自于http://www.cnblogs.com/skywang12345/p/3514589.html 特在此说明!!!!! 根据修改的数据类型,可以将JUC包中的原子操作类可以分为 ...

  6. Java多线程系列--“JUC锁”10之 CyclicBarrier原理和示例

    概要 本章介绍JUC包中的CyclicBarrier锁.内容包括:CyclicBarrier简介CyclicBarrier数据结构CyclicBarrier源码分析(基于JDK1.7.0_40)Cyc ...

  7. Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

    本章对ReentrantLock包进行基本介绍,这一章主要对ReentrantLock进行概括性的介绍,内容包括:ReentrantLock介绍ReentrantLock函数列表ReentrantLo ...

  8. Java多线程系列--“JUC锁”01之 框架

    本章,我们介绍锁的架构:后面的章节将会对它们逐个进行分析介绍.目录如下:01. Java多线程系列--“JUC锁”01之 框架02. Java多线程系列--“JUC锁”02之 互斥锁Reentrant ...

  9. 【JUC】JUC锁框架综述

    一.前言 在分析完了集合框架后,很有必要接着分析java并发包下面的源码,JUC(java.util.concurrent)源码也是我们学习Java迈进一步的重要过程.我们分为几个模块进行分析,首先是 ...

  10. 【JUC】JUC集合框架综述

    一.前言 完成了JUC的锁框架的分析后,现在分析JUC集合框架,之前分析过的集合框架,很大程度上都不是线程安全的,其在多线程环境下会出现很多问题,为了保证在多线程环境下仍然能够正确安全的访问集合,出现 ...

随机推荐

  1. 【算法•日更•第三十一期】KMP算法

    ▎前言 这次要讲的HMP算法KMP算法很简单,是用于处理字符串的,之前一直以为很难,其实也不过如此(说白了就是优化一下暴力). ▎处理的问题 通常处理的问题是这样的:给定两个字符串s1和s2,其中s1 ...

  2. 【Flutter 实战】一文学会20多个动画组件

    老孟导读:此篇文章是 Flutter 动画系列文章第三篇,后续还有动画序列.过度动画.转场动画.自定义动画等. Flutter 系统提供了20多个动画组件,只要你把前面[动画核心](文末有链接)的文章 ...

  3. NoSQLBench入门教程

    NoSQLBench发布于2020年3月,它是第一个试图在分布式系统性能测试上做到面面俱到的专业测试工具.同时,它旨在让轻量级的和专业的用户都可以使用. 什么是NoSQLBench? 当今的开发人员希 ...

  4. JS 对象基本用法

    声明对象的两种语法 let obj = { 'name': 'frank', 'age': 18 } let obj = new Object({'name': 'frank'}) 如何删除对象的属性 ...

  5. Docker 最常用的镜像命令和容器命令

    本文列出了 Docker 使用过程中最常用的镜像命令和容器命令,以及教大家如何操作容器数据卷,实现容器数据的备份.熟练练习这些命令以后,再来一些简单的应用部署练习,大家就可以学习 Docker 的镜像 ...

  6. 01.arduino uno开发板入门

    01.所需工具 -Ariduino uno开发板一块 -对应的usb数据线 -杜邦线若干 -一些用以测试的电子元器件 02.安装arduino IDE 打开官网链接https://www.arduin ...

  7. WPF实现飞控姿态仪表盘控件Attitude dashboard

    一.概要 近期项目当中需要用到飞机控制仪表盘的姿态仪,一开始去各大网站搜索解决方案要么就是winfrom要么就是很老的代码根本不能运行更甚者是居然有的还要下载积分. 只能自己手动从0开始写一个控件.这 ...

  8. go语言之字符串、指针、数组、切片、结构struct、面向对象

    一: 字符串 概述: Go 语言将字符串作为 种原生的基本数据类型,字 符串的初始化可以使用字符串字面量. (1)字符串是常量,可以通过类 数组 索引访问其字节单元,但是不能修改某个字节的值 (2)宇 ...

  9. Linux下关闭和开启IPv6的方法

    确认IPV6是否开启 在Linux下确认IPv6是否已经被启用,可以从三个方面确定. 1.使用ifconfig查看自己的IP地址是否含有IPv6地址. eth0 Link encap:Ethernet ...

  10. 从后端到前端之Vue(六)表单组件

    表单组件 做项目的时候会遇到一个比较头疼的问题,一个大表单里面有好多控件,一个一个做设置太麻烦,更头疼的是,需求还总在变化,一会多选.一会单选.一会下拉的,变来变去的烦死宝宝了. 那么怎么解决这个问题 ...