【面试专栏】JAVA CAS(Conmpare And Swap)原理
1. CAS简介
在计算机科学中,比较和交换(Conmpare And Swap)是用于实现多线程同步的原子指令。它将内存位置的内容与给定值进行比较,只有在相同的情况下,将该内存位置的内容修改为新的给定值。这是作为单个原子操作完成的。
原子性保证新值基于最新信息计算;如果该值在同一时间被另一个线程更新,则写入将失败。操作结果必须说明是否进行替换;这可以通过一个简单的布尔响应(这个变体通常称为比较和设置),或通过返回从内存位置读取的值来完成。
查看JUC(java.util.concurrent)下的atomic包:
2. CAS在Java中的应用
以AtomicInteger为例:
package java.util.concurrent.atomic;
import java.util.function.IntUnaryOperator;
import java.util.function.IntBinaryOperator;
import sun.misc.Unsafe;
/**
* An {@code int} value that may be updated atomically. See the
* {@link java.util.concurrent.atomic} package specification for
* description of the properties of atomic variables. An
* {@code AtomicInteger} is used in applications such as atomically
* incremented counters, and cannot be used as a replacement for an
* {@link java.lang.Integer}. However, this class does extend
* {@code Number} to allow uniform access by tools and utilities that
* deal with numerically-based classes.
*
* @since 1.5
* @author Doug Lea
*/
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
/**
* Creates a new AtomicInteger with the given initial value.
*
* @param initialValue the initial value
*/
public AtomicInteger(int initialValue) {
value = initialValue;
}
/**
* Creates a new AtomicInteger with initial value {@code 0}.
*/
public AtomicInteger() {
}
/**
* Gets the current value.
*
* @return the current value
*/
public final int get() {
return value;
}
/**
* Sets to the given value.
*
* @param newValue the new value
*/
public final void set(int newValue) {
value = newValue;
}
/**
* Eventually sets to the given value.
*
* @param newValue the new value
* @since 1.6
*/
public final void lazySet(int newValue) {
unsafe.putOrderedInt(this, valueOffset, newValue);
}
/**
* Atomically sets to the given value and returns the old value.
*
* @param newValue the new value
* @return the previous value
*/
public final int getAndSet(int newValue) {
return unsafe.getAndSetInt(this, valueOffset, newValue);
}
/**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that
* the actual value was not equal to the expected value.
*/
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
/**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* <p><a href="package-summary.html#weakCompareAndSet">May fail
* spuriously and does not provide ordering guarantees</a>, so is
* only rarely an appropriate alternative to {@code compareAndSet}.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful
*/
public final boolean weakCompareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
/**
* Atomically increments by one the current value.
*
* @return the previous value
*/
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
/**
* Atomically decrements by one the current value.
*
* @return the previous value
*/
public final int getAndDecrement() {
return unsafe.getAndAddInt(this, valueOffset, -1);
}
/**
* Atomically adds the given value to the current value.
*
* @param delta the value to add
* @return the previous value
*/
public final int getAndAdd(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta);
}
/**
* Atomically increments by one the current value.
*
* @return the updated value
*/
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
/**
* Atomically decrements by one the current value.
*
* @return the updated value
*/
public final int decrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
}
/**
* Atomically adds the given value to the current value.
*
* @param delta the value to add
* @return the updated value
*/
public final int addAndGet(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
}
/**
* Atomically updates the current value with the results of
* applying the given function, returning the previous value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param updateFunction a side-effect-free function
* @return the previous value
* @since 1.8
*/
public final int getAndUpdate(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return prev;
}
/**
* Atomically updates the current value with the results of
* applying the given function, returning the updated value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param updateFunction a side-effect-free function
* @return the updated value
* @since 1.8
*/
public final int updateAndGet(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return next;
}
/**
* Atomically updates the current value with the results of
* applying the given function to the current and given values,
* returning the previous value. The function should be
* side-effect-free, since it may be re-applied when attempted
* updates fail due to contention among threads. The function
* is applied with the current value as its first argument,
* and the given update as the second argument.
*
* @param x the update value
* @param accumulatorFunction a side-effect-free function of two arguments
* @return the previous value
* @since 1.8
*/
public final int getAndAccumulate(int x,
IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return prev;
}
/**
* Atomically updates the current value with the results of
* applying the given function to the current and given values,
* returning the updated value. The function should be
* side-effect-free, since it may be re-applied when attempted
* updates fail due to contention among threads. The function
* is applied with the current value as its first argument,
* and the given update as the second argument.
*
* @param x the update value
* @param accumulatorFunction a side-effect-free function of two arguments
* @return the updated value
* @since 1.8
*/
public final int accumulateAndGet(int x,
IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return next;
}
//......
}
可以看出自JDK1.5就开始引入CAS来解决多线程中的并发问题。
查看方法源码,可以看出所有的CAS操作都是通过sun.misc包下Unsafe
类实现的。而sun.misc包存在于JDK的rt.jar包,是由JVM本地实现。
Unsafe
是CAS的核心类。由于Java无法直接访问底层系统,则需要通过本地(native)来访问。Unsafe
可以直接操作特定内存的数,其内部方法可以像C语言的指针一样直接操作内存。
注意:Unsafe
类的所有方法都是native修饰的,即Unsafe
类的所有方法都可以直接调用底层操作系统资源。
3. CAS在JUC中的应用
以重入锁ReentrantLock
为例。通过查看部分源码:
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
/** Synchronizer providing all implementation mechanics */
private final Sync sync;
/**
* Base of synchronization control for this lock. Subclassed
* into fair and nonfair versions below. Uses AQS state to
* represent the number of holds on the lock.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
/**
* Performs {@link Lock#lock}. The main reason for subclassing
* is to allow fast path for nonfair version.
*/
abstract void lock();
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
//......
}
//......
}
可以看出,内部抽象类Sync
继承自AbstractQueuedSynchronizer
类。AbstractQueuedSynchronizer
作为Java多种锁的父类,有很多地方通过CAS操作来提高并发效率。查看AbstractQueuedSynchronizer
部分源码:
/**
* Inserts node into queue, initializing if necessary. See picture above.
* @param node the node to insert
* @return node's predecessor
*/
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
可以看出在上述的同步队列的入队操作时,在多线程环境下,对其头尾节点的操作都有可能失败,失败后通过自旋操作再次尝试,直到成功,这也是一种乐观锁的实现。
4. CAS缺点
- 循环时间长,CPU开销大
- 只能保证一个共享变量的原子操作
- 引出ABA问题
5. ABA问题
比如说一个线程1从内存位置V中取出A,另一个线程2也从内存中取出A,线程2将A变成了B,然后将V位置的数据变成A,这时候线程1进行CAS操作发现内存中仍然是A,那么线程1操作成功。尽管线程1的CAS操作成功,但是不代表这个过程就是没有问题的。
如果链表的头在变化了两次后恢复了原值,但是不代表链表就没有变化。
所以JAVA中提供了AtomicStampedReference
或AtomicMarkableReference
来处理ABA问题,主要是在对象中额外再增加一个标记来标识对象是否有过变更。
【面试专栏】JAVA CAS(Conmpare And Swap)原理的更多相关文章
- 浅谈CAS(Compare and Swap) 原理
浅谈CAS原理java并发编程也研究了一段时间了,对CAS的原理总是不太理解,今天再研究了一下,记录一些自己的理解. 说到CAS,再java中的某些情况下,甚至jdk1.5以后的大多数情况,并发 ...
- 【面试专栏】JAVA锁机制
1. 悲观锁 / 乐观锁 在Java和数据库中都存在悲观锁和乐观锁的应用.Mysql锁机制中的悲观锁和乐观锁请查看: Mysql锁机制--悲观锁和乐观锁 悲观锁:在获得数据时先加锁,只到数 ...
- JAVA CAS原理深度分析-转载
参考文档: http://www.blogjava.net/xylz/archive/2010/07/04/325206.html http://blog.hesey.net/2011/09/reso ...
- JAVA CAS原理
转自: http://blog.csdn.net/hsuxu/article/details/9467651 CAS CAS: Compare and Swap java.util.concurren ...
- 【转】JAVA CAS原理深度分析
java.util.concurrent包完全建立在CAS之上的,没有CAS就不会有此包.可见CAS的重要性. CAS CAS:Compare and Swap, 翻译成比较并交换. java.uti ...
- JAVA CAS原理深度分析
参考文档: http://www.blogjava.net/xylz/archive/2010/07/04/325206.html http://blog.hesey.net/2011/09/reso ...
- JAVA CAS原理深度分析(转)
看了一堆文章,终于把JAVA CAS的原理深入分析清楚了. 感谢GOOGLE强大的搜索,借此挖苦下百度,依靠百度什么都学习不到! 参考文档: http://www.blogjava.net/xylz/ ...
- 【Java并发编程】9、非阻塞同步算法与CAS(Compare and Swap)无锁算法
转自:http://www.cnblogs.com/Mainz/p/3546347.html?utm_source=tuicool&utm_medium=referral 锁(lock)的代价 ...
- JAVA CAS原理浅谈
java.util.concurrent包完全建立在CAS之上的,没有CAS就不会有此包.可见CAS的重要性. CAS CAS:Compare and Swap, 翻译成比较并交换. java.uti ...
随机推荐
- 使用Actor模型管理Web Worker多线程
前端固有的编程思维是单线程,比如JavaScript语言的单线程.浏览器JS线程与UI线程互斥等等,Web Woker是HTML5新增的能力,为前端带来多线程能力.这篇文章简单记录一下搜狗地图WebG ...
- workerman搭建聊天室
首先,先打开官网手册 http://doc.workerman.net/ 根据手册里安装里的提示,完成环境检测,和安装对应的扩展,并把对应的WorkerMan代码包下载解压至根目录 在根目录下创建 ...
- 3dmax利用静止静态对象功能,制作精准击碎效果
一般情况下,当我们在3D建模中使用RayFire破碎插件来制作一些精准击碎效果时,需要将物体的击中部分定义为休眠对象,将其他未击中的部分定义为静态对象,以实现击中部分出现碎片的效果.但这种方式必须精准 ...
- CorelDRAW X7 X8 2017 2018是什么关系?
从CorelDRAW 2017版本开始我们叫习惯了的X几系列的CorelDRAW毅然决然的就换了称呼,所以有时候很多朋友对于软件版本,经常会傻傻分不清,还有人认为X8版本比2017版本高,究竟为什么会 ...
- 在线思维导图Ayoa共享功能使用教程
Ayoa是一个制作思维导图的软件,除了导图制作,小编在使用过程中还发现了一些令人惊喜的功能,这些功能使得Ayoa有了更大的亮点以吸引用户. 下面就为大家简单介绍几个小编认为Ayoa中较为实用的共享功能 ...
- jQuery 第五章 实例方法 详解动画之animate()方法
.animate() .stop() .finish() ------------------------------------------------------------------- ...
- 在Jenkins的帮助下让我们的应用CI与CD
上图三位大家应该很熟悉吧,借助这三者可以让我们的服务在Linux环境下持续集成.容器中持续部署. 本篇博客的项目是core webapi, .NET 5.0 在11号已经正式发布了,你们的项目都升级了 ...
- LeetCode双周赛#35
1589. 所有排列中的最大和 #差分 #贪心 题目链接 题意 给定整数数组nums,以及查询数组requests,其中requests[i] = [starti, endi] .第i个查询求 num ...
- 2018-div-matrix 题解(打表)
题目链接 题目大意 要你求有多少个满足题目条件的矩阵mod 1e9+7 \(a[1][1]=2018\;\;a[i][j]为a[i-1][j]和a[i][j-1]的因子\) 题目思路 dp也就图一乐, ...
- 解决YUM下Loaded plugins: fastestmirror Determining fastest mirrors 的错误问题
最近想再购买一台虚拟服务器做项目测试,之前在西部数码购买的已经过期了,在同事的推荐下去搬瓦工购买了一台服务器,听他介绍在这里购买服务器很便宜($19.99/年)而且还是国外的,看着相比之前的确实挺便宜 ...