什么是数据倾斜

对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜。

何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈。

如果数据倾斜没有解决,完全没有可能进行性能调优,其他所有的调优手段都是一个笑话。数据倾斜是最能体现一个spark大数据工程师水平的性能调优问题。

数据倾斜如果能够解决的话,代表对spark运行机制了如指掌。

数据倾斜俩大直接致命后果。

1 数据倾斜直接会导致一种情况:Out Of Memory。

2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢。

我们以100亿条数据为列子。

个别Task(80亿条数据的那个Task)处理过度大量数据。导致拖慢了整个Job的执行时间。这可能导致该Task所在的机器OOM,或者运行速度非常慢。

数据倾斜是如何造成的

在Shuffle阶段。同样Key的数据条数太多了。导致了某个key(上图中的80亿条)所在的Task数据量太大了。远远超过其他Task所处理的数据量。

而这样的场景太常见了。二八定律可以证实这种场景。

搞定数据倾斜需要:

1 搞定shuffle

2 搞定业务场景

3 搞定 cpu core的使用情况

4 搞定OOM的根本原因等。

所以搞定了数据倾斜需要对至少以上的原理了如指掌。所以搞定数据倾斜是关键中的关键。

一个经验结论是:一般情况下,OOM的原因都是数据倾斜。某个task任务数据量太大,GC的压力就很大。这比不了Kafka,因为kafka的内存是不经过JVM的。是基于Linux内核的Page.

数据倾斜的原理很简单:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。

因此出现数据倾斜的时候,Spark作业看起来会运行得非常缓慢,甚至可能因为某个task处理的数据量过大导致内存溢出。

下图就是一个很清晰的例子:hello这个key,在三个节点上对应了总共7条数据,这些数据都会被拉取到同一个task中进行处理;而world和you这两个key分别才对应1条数据,所以另外两个task只要分别处理1条数据即可。此时第一个task的运行时间可能是另外两个task的7倍,而整个stage的运行速度也由运行最慢的那个task所决定。

由于同一个Stage内的所有Task执行相同的计算,在排除不同计算节点计算能力差异的前提下,不同Task之间耗时的差异主要由该Task所处理的数据量决定。

Spark-4-为何要处理数据倾斜的更多相关文章

  1. Spark学习之路 (九)SparkCore的调优之数据倾斜调优

    摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Sp ...

  2. 解决spark中遇到的数据倾斜问题

    一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey ...

  3. Spark性能优化:数据倾斜调优

    前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化 ...

  4. 数据倾斜是多么痛?spark作业调优秘籍

    目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么?      CSDN日报20170703——<从高考到程序员——我一直在寻找答案>      [直播]探究L ...

  5. 【转】数据倾斜是多么痛?spark作业/面试/调优必备秘籍

    原博文出自于: http://sanwen.net/a/gqkotbo.html 感谢! 来源:数盟 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性 ...

  6. Spark 调优之数据倾斜

    什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度 ...

  7. Spark学习之路 (九)SparkCore的调优之数据倾斜调优[转]

    调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的 ...

  8. Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势

    原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitio ...

  9. Spark性能调优之解决数据倾斜

    Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...

随机推荐

  1. FL Studio通道常规设置

    每个通道设置窗口都包含声相.音量.音高和混音音轨等.刚学习FL Studio的同学可能对这些旋钮的功能还不是很了解,所以也就直接导致了不能很好的运用.为了帮助同学进一步熟悉这款软件,小编今天将为大家详 ...

  2. jQuery 第二章 实例方法 DOM操作取赋值相关方法

    取赋值相关方法:  .html() .text() .val() .size() .addClass() .removeClass() .hasClass() .html() html方法干嘛的呢,底 ...

  3. web自动化 下拉框、切换到新窗口

    一.下拉框 相信大家在手动测试web页面时,遇到过下拉框吧,那进行web自动化测试时,如何操作下拉框,且看下文 1.selenium中提供了方法,先导入Select方法 from selenium.w ...

  4. 基于gin的golang web开发:永远不要相信用户的输入

    作为后端开发者我们要记住一句话:"永远不要相信用户的输入",这里所说的用户可能是人,也可能是另一个应用程序."永远不要相信用户的输入"是安全编码的准则,也就是说 ...

  5. JavaScript中的链式调用

    链模式 链模式是一种链式调用的方式,准确来说不属于通常定义的设计模式范畴,但链式调用是一种非常有用的代码构建技巧. 描述 链式调用在JavaScript语言中很常见,如jQuery.Promise等, ...

  6. SpringBoot---WebMvcConfigurer详解

    1. 简介 2. WebMvcConfigurer接口 2.1 addInterceptors:拦截器 2.2 addViewControllers:页面跳转 2.3 addResourceHandl ...

  7. Java蓝桥杯——贪心算法

    贪心算法 贪心算法:只顾眼前的苟且. 即在对问题求解时,总是做出在当前看来是最好的选择 如买苹果,专挑最大的买. 最优装载问题--加勒比海盗 货物重量:Wi={4,10,7,11,3,5,14,2} ...

  8. 可变长形参,增强for语句

    `package 可变长形参; public class VarArgumen { public static int max(int...varArgs) {//就有可变长形参的求最大值方法 //可 ...

  9. 电脑装MySQL免安装版配置失败提示系统错误2怎么解决?

    一·准备工作 我下载安装的版本是:mysql-8.0.16-winx64(免安装版) 下载地址:https://www.mysql.com/ (官网地址)https://cdn2.lmonkey.co ...

  10. DevOps Workshop | 代码管理入门:基于代码扫描实现团队效率提升

    CODING「DevOps Workshop 学习营地」持续火热进行中! 在这里,你可以轻松实践 DevOps 全流程.体验高效的云端开发.赢取精美礼品--第二期大奖「戴尔 U2718Q 显示器」将于 ...