Spark-4-为何要处理数据倾斜
什么是数据倾斜
对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜。
何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈。
如果数据倾斜没有解决,完全没有可能进行性能调优,其他所有的调优手段都是一个笑话。数据倾斜是最能体现一个spark大数据工程师水平的性能调优问题。
数据倾斜如果能够解决的话,代表对spark运行机制了如指掌。
数据倾斜俩大直接致命后果。
1 数据倾斜直接会导致一种情况:Out Of Memory。
2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢。
我们以100亿条数据为列子。
个别Task(80亿条数据的那个Task)处理过度大量数据。导致拖慢了整个Job的执行时间。这可能导致该Task所在的机器OOM,或者运行速度非常慢。
数据倾斜是如何造成的
在Shuffle阶段。同样Key的数据条数太多了。导致了某个key(上图中的80亿条)所在的Task数据量太大了。远远超过其他Task所处理的数据量。
而这样的场景太常见了。二八定律可以证实这种场景。
搞定数据倾斜需要:
1 搞定shuffle
2 搞定业务场景
3 搞定 cpu core的使用情况
4 搞定OOM的根本原因等。
所以搞定了数据倾斜需要对至少以上的原理了如指掌。所以搞定数据倾斜是关键中的关键。
一个经验结论是:一般情况下,OOM的原因都是数据倾斜。某个task任务数据量太大,GC的压力就很大。这比不了Kafka,因为kafka的内存是不经过JVM的。是基于Linux内核的Page.
数据倾斜的原理很简单:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。
因此出现数据倾斜的时候,Spark作业看起来会运行得非常缓慢,甚至可能因为某个task处理的数据量过大导致内存溢出。
下图就是一个很清晰的例子:hello这个key,在三个节点上对应了总共7条数据,这些数据都会被拉取到同一个task中进行处理;而world和you这两个key分别才对应1条数据,所以另外两个task只要分别处理1条数据即可。此时第一个task的运行时间可能是另外两个task的7倍,而整个stage的运行速度也由运行最慢的那个task所决定。
由于同一个Stage内的所有Task执行相同的计算,在排除不同计算节点计算能力差异的前提下,不同Task之间耗时的差异主要由该Task所处理的数据量决定。
Spark-4-为何要处理数据倾斜的更多相关文章
- Spark学习之路 (九)SparkCore的调优之数据倾斜调优
摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Sp ...
- 解决spark中遇到的数据倾斜问题
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey ...
- Spark性能优化:数据倾斜调优
前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化 ...
- 数据倾斜是多么痛?spark作业调优秘籍
目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么? CSDN日报20170703——<从高考到程序员——我一直在寻找答案> [直播]探究L ...
- 【转】数据倾斜是多么痛?spark作业/面试/调优必备秘籍
原博文出自于: http://sanwen.net/a/gqkotbo.html 感谢! 来源:数盟 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性 ...
- Spark 调优之数据倾斜
什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度 ...
- Spark学习之路 (九)SparkCore的调优之数据倾斜调优[转]
调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的 ...
- Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势
原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitio ...
- Spark性能调优之解决数据倾斜
Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据 • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...
随机推荐
- PVE 下的虚拟机磁盘扩容
扩容背景:一台测试机磁盘不足,需要扩容: /dev/mapper/centos-root 40G 40G 20K 100% / 先到PVE网页上对需要扩容的机器扩容,这里新建20G示例: 另外之前也分 ...
- 关于C# Span的一些实践
Span这个东西出来很久了,居然因为5.0又火起来了. 相关知识 在大多数情况下,C#开发时,我们只使用托管内存.而实际上,C#为我们提供了三种类型的内存: 堆栈内存 - 最快速的内存,能够做到极 ...
- 数据恢复当选EasyRecovery,设备不再受限
我们在逐渐适应信息电子化的同时,也有一些潜在的麻烦接踵而来,其中较为常见的就是文件和数据的保存问题. 显然,设备的存储空间是有限的,这就不可避免地会出现数据被删除.覆盖或丢失的现象,如果丢失的是重要数 ...
- 推荐一款比迅雷下载速度快的mac下载器
Folx和迅雷是2款支持在Mac系统上进行文件资源下载的工具,两者都支持BT种子资源的下载和直链下载,但Folx还另外支持了下载计划的自定义和智能限速功能.本文主要是为了比较Folx和迅雷在下载同一资 ...
- Android应用测试指南
一.Android 的 SDK Windows 版本安装 按顺序安装以下内容 1. 安装JDK(Java Development Kit, 即Java开发工具包) 2. 安装Eclipse 集成 ...
- kafka入门之broker-集群管理
依赖于zookeeper,broker向zk中注册的信息以json格式保存,其中包括: 1.listener_security_protocol_map:此值指定了该broker与外界通信所用的安全协 ...
- gitee模拟备份
这个作业的要求在哪里 作业要求 团队名称 欢天喜地七仙女 团队成员 王玮晗.林鑫宇. 黄龙骏.陈少龙.何一山.崔亚明.陆桂莺 这个作业的目标 按照要求进行编码,按要求新建码云仓库.上传文件.拍摄视频 ...
- CenOS下载离线依赖包神器--yumdownloader
Blog:博客园 个人 本文只总结一些常用的用法,更详细的说明见man yumdownloader和 info yumdownloader. 概述 有时候所在服务器环境不能访问外网,yum安装会感到非 ...
- 安装IAR编译器详解
1.首先下载好安装包和破解包 我安装使用的版本:IAR for 8051 v9.10 链接: https://pan.baidu.com/s/13x36j5qL90YokrAlyChQhw 提取码: ...
- moviepy音视频剪辑:视频剪辑基类VideoClip的属性及方法详解
☞ ░ 前往老猿Python博文目录 ░ 一.概述 在<moviepy音视频剪辑:moviepy中的剪辑基类Clip详解>和<moviepy音视频剪辑:moviepy中的剪辑基类Cl ...