Sharding-JDBC简介

Sharding-JDBC定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。 它使用客户端直连数据库,以 jar 包形式提供服务,无需额外部署和依赖,可理解为增强版的 JDBC 驱动,完全兼容 JDBC 和各种 ORM 框架。

  • 适用于任何基于 JDBC 的 ORM 框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template 或直接使用 JDBC。
  • 支持任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP 等。
  • 支持任意实现JDBC规范的数据库。目前支持 MySQL,Oracle,SQLServer,PostgreSQL 以及任何遵循 SQL92 标准的数据库。

Sharding配置示意图

简单的理解如下图,对sharding-jdbc进行配置,其实就是对所有需要进行分片的表进行配置。对表的配置,则主要是对分库的配置和分表的配置。这里可以只分库不分表,或者只分表不分库,或者同时包含分库和分表逻辑。

1、水平分割

1.1 水平分库

1)、概念:

以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。

2)、结果

每个库的结构都一样;数据都不一样;

所有库的并集是全量数据;

1.2 水平分表

1)、概念

以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。

2)、结果

每个表的结构都一样;数据都不一样;

所有表的并集是全量数据;

2、Shard-jdbc中间件

2.1 架构图

2.2 特点

  1. Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。
  2. 适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
  3. 可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。
  4. 以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。
  5. 分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。
  6. SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。

3、项目案例

3.1 项目结构

springboot     2.0 版本
druid 1.1.13 版本
sharding-jdbc 3.1 版本

3.2 数据库配置

一台基础库映射(shard_one)

两台库做分库分表(shard_two,shard_three)。
表使用:table_one,table_two

3.3 核心代码块

3.3.1 数据源配置文件

spring:
datasource:
# 数据源:shard_one
dataOne:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_two
dataTwo:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_three
dataThree:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

3.3.2 数据库分库策略

/**
* 数据库映射计算
*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> { private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分库算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "ds_" + ((hash % 2) + 2) ;
}
}

3.3.3 数据表1分表策略

/**
* 分表算法
*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_one_" + (hash % 5+1);
}
}

3.3.4 数据表2分表策略

/**
* 分表算法
*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_two_" + (hash % 5+1);
}
}

3.3.5 数据源集成配置

/**
* 数据库分库分表配置
*/
@Configuration
public class ShardJdbcConfig {
// 省略了 druid 配置,源码中有
/**
* Shard-JDBC 分库配置
*/
@Bean
public DataSource dataSource (@Autowired DruidDataSource dataOneSource,
@Autowired DruidDataSource dataTwoSource,
@Autowired DruidDataSource dataThreeSource) throws Exception {
ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();
shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());
shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());
shardJdbcConfig.setDefaultDataSourceName("ds_0");
Map<String,DataSource> dataMap = new LinkedHashMap<>() ;
dataMap.put("ds_0",dataOneSource) ;
dataMap.put("ds_2",dataTwoSource) ;
dataMap.put("ds_3",dataThreeSource) ;
Properties prop = new Properties();
return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);
} /**
* Shard-JDBC 分表配置
*/
private static TableRuleConfiguration getTableRule01() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_one");
result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));
return result;
}
private static TableRuleConfiguration getTableRule02() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_two");
result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));
return result;
}
}

3.3.6 测试代码执行流程

@RestController
public class ShardController {
@Resource
private ShardService shardService ;
/**
* 1、建表流程
*/
@RequestMapping("/createTable")
public String createTable (){
shardService.createTable();
return "success" ;
}
/**
* 2、生成表 table_one 数据
*/
@RequestMapping("/insertOne")
public String insertOne (){
shardService.insertOne();
return "SUCCESS" ;
}
/**
* 3、生成表 table_two 数据
*/
@RequestMapping("/insertTwo")
public String insertTwo (){
shardService.insertTwo();
return "SUCCESS" ;
}
/**
* 4、查询表 table_one 数据
*/
@RequestMapping("/selectOneByPhone/{phone}")
public TableOne selectOneByPhone (@PathVariable("phone") String phone){
return shardService.selectOneByPhone(phone);
}
/**
* 5、查询表 table_one 数据
*/
@RequestMapping("/selectTwoByPhone/{phone}")
public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){
return shardService.selectTwoByPhone(phone);
}
}

(二)基于shard-jdbc中间件,实现数据分库分表的更多相关文章

  1. CRL快速开发框架系列教程十一(大数据分库分表解决方案)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

  2. SpringBoot 2.0 整合sharding-jdbc中间件,实现数据分库分表

    一.水平分割 1.水平分库 1).概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中. 2).结果 每个库的结构都一样:数据都不一样: 所有库的并集是全量数据: 2.水平分表 1).概 ...

  3. 重磅来袭,使用CRL实现大数据分库分表方案

    关于分库分表方案详细介绍 http://blog.csdn.net/bluishglc/article/details/7696085 这里就不作详细描述了 分库分表方案基本脱离不了这个结构,受制于实 ...

  4. mysql分库分表(二)

    mysql分库分表 参考: https://www.cnblogs.com/dongruiha/p/6727783.html https://www.cnblogs.com/oldUncle/p/64 ...

  5. 海量数据分库分表方案(二)技术选型与sharding-jdbc实现

    上一章已经讲述分库分表算法选型,本章主要讲述分库分表技术选型 文中关联上一章,若下文出现提及其时,可以点击 分库分表算法方案与技术选型(一) 主要讲述 框架比较 sharding-jdbc.zdal ...

  6. 一文快速入门分库分表中间件 Sharding-JDBC (必修课)

    书接上文 <一文快速入门分库分表(必修课)>,这篇拖了好长的时间,本来计划在一周前就该写完的,结果家庭内部突然人事调整,领导层进行权利交接,随之宣布我正式当爹,紧接着家庭地位滑落至第三名, ...

  7. 分库分表神器 Sharding-JDBC,几千万的数据你不搞一下?

    今天我们介绍一下 Sharding-JDBC框架和快速的搭建一个分库分表案例,为讲解后续功能点准备好环境. 一.Sharding-JDBC 简介 Sharding-JDBC 最早是当当网内部使用的一款 ...

  8. mysql大数据解决方案--分表分库(0)

    引言 对于一个大型的互联网应用,海量数据的存储和访问成为了系统设计的瓶颈问题,对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式. •水 ...

  9. 微服务、分库分表、分布式事务管理、APM链路跟踪性能分析演示项目

    好多年没发博,最近有时间整理些东西,分享给大家. 所有内容都在github项目liuzhibin-cn/my-demo中,基于SpringBoot,演示Dubbo微服务 + Mycat, Shardi ...

随机推荐

  1. Linux内核源码分析之setup_arch (三)

    1. 前言 在 Linux内核源码分析之setup_arch (二) 中介绍了当前启动阶段的内存分配函数memblock_alloc,该内存分配函数在本篇将要介绍paging_init中用于页表和内存 ...

  2. JQuery特点:

    轻量级 强大的选择器 出色的DOM封装 可靠的事件处理机制 完善的Ajax 出色的浏览器兼容性 丰富的插件支持 完善的文档 支持链式操作

  3. Dubbo 就是靠它崭露头角!(身为开源框架很重要的一点)

    Hola,我是 yes. 经过了 RPC 核心和 Dubbo 微内核两篇文章后,今天终于要稍稍深入一波 Dubbo 了. 作为一个通用的 RPC 框架,性能是很重要的一环,而易用性和扩展性也极为重要. ...

  4. linux mysql source 导入大文件报错解决办法

    找到mysql的配置文件目录 my.cnf interactive_timeout = 120wait_timeout = 120max_allowed_packet = 500M 在导入过程中可能会 ...

  5. 【JavaWeb】JSTL 标签库

    JSTL 标签库 简介 JSTL(JSP Standard Tag Library),即 JSP 标准标签库.标签库是为了替换代码脚本,使得整个 jsp 页面变得更加简洁. JSTL 有五个功能不同的 ...

  6. Flutter 基础组件:输入框和表单

    前言 Material组件库中提供了输入框组件TextField和表单组件Form. 输入框TextField 接口描述 const TextField({ Key key, // 编辑框的控制器,通 ...

  7. 数据库MySQL(带你零基础入门MySQL)

    (一)认识数据库 redis默认端口:6379 mysql默认端口:3306 什么是数据库? 数据库的英文单词:data base,简称DB. 数据库实际上就是一个文件集合,是一个存储数据的仓库,本质 ...

  8. 【win10】win10下两个显示器不同桌面壁纸

    win10系统下,双屏显示为不同的桌面壁纸 操作: 1.鼠标右键点击个性化 2.点击背景选项 3.在图片上右键选择要添加为背景的图片 同理,将另一个屏幕壁纸设为监视器1 最后效果为两个分屏为不同桌面壁 ...

  9. C#数组的 Length 和 Count()

    C#数组的 Length 和 Count() C# 数组中 Length 表示数组项的个数,是个属性.而 Count() 也是表示项的个数,是个方法,它的值和 Length 一样.但实际上严格地说, ...

  10. P2979 [USACO10JAN]奶酪塔Cheese Towers(完全背包,递推)

    题目描述 Farmer John wants to save some blocks of his cows' delicious Wisconsin cheese varieties in his ...