题意:每包干脆面可能开出卡或者什么都没有,一共n种卡,每种卡每包爆率pi,问收齐n种卡的期望

思路:期望求解公式为:$E(x) = \sum_{i=1}^{k}pi * xi + (1 - \sum_{i = 1}^{k}pi) * [1 + E(x)]$,即能转换到x情况的期望+x情况原地踏步的期望。

因为n比较小,我们可以直接状压来表示dp[x]为x状态时集齐的期望。那么显然dp[111111111] = 0。然后我们状态反向求解。最终答案为dp[0]。

然后来看期望的求解:$E(x) = \sum_{i = 1}^{k}pi * [1 + E(xi)] + (1 - \sum_{i = 1}^{k}pi) * [1 + E(x)]$,E(xi)是E(x)某一位0变成1后的期望。

化简后:$E(x) = (\sum_{i = 1}^{k}pi * E(xi) + 1) / \sum_{i = 1}^{k}pi$

题解

代码:

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 20 + 5;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e4 + 7;
double dp[1 << maxn];
double p[maxn];
int main(){
int n;
while(~scanf("%d", &n)){
// for(int i = 0; i < (1 << n); i++) dp[i] = 0;
for(int i = 0; i < n; i++){
scanf("%lf", &p[i]);
}
dp[(1 << n) - 1] = 0;
for(int i = (1 << n) - 2; i >= 0; i--){
double sump = 0, sumpe = 0;
for(int j = 0; j < n; j++){
if(!(i & (1 << j))){
sump += p[j];
sumpe += p[j] * dp[i | (1 << j)];
}
}
dp[i] = (sumpe + 1) / sump;
}
printf("%.6f\n", dp[0]);
}
return 0;
}

HDU 4336 Card Collector(状压 + 概率DP 期望)题解的更多相关文章

  1. hdu 4336 Card Collector(状压dp/Min-Max反演)

    传送门 解题思路 第一种方法是状压\(dp\),设\(f(S)\)为状态\(S\)到取完的期望步数,那么\(f(S)\)可以被自己转移到,还可以被\(f(S|(1<<i))\)转移到,\( ...

  2. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  3. [HDU 4336] Card Collector (状态压缩概率dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡 ...

  4. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  5. HDU 4336——Card Collector——————【概率dp】

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  7. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. HDU 4336 Card Collector:期望dp + 状压

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 一共有n种卡片.每买一袋零食,有可能赠送一张卡片,也可能没有. 每一种卡片赠送的概率为p ...

  9. HDU 4336 Card Collector:状压 + 期望dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 有n种卡片(n <= 20). 对于每一包方便面,里面有卡片i的概率为p[i],可 ...

随机推荐

  1. 1V转3V的低功耗升压芯片

       由于1V的电压很低,如果需要1V转3V的芯片,也是能找到的,一般要输入电压要选择余量,选择比1V更低的启动电压的1V转3V升压芯片.PW5100干电池升压IC就具有1V转3V,稳压输出3.3V的 ...

  2. 【MYSQL】DDL语句

    介绍:DDL语句,即数据定义语句,定义了不同的数据段,数据库表.表.列.索引等数据库对象:例如,create.drop.alter 适用对象:一般是由数据库管理员DBA使用 1.连接数据库 mysql ...

  3. Micro Frontends 微前端

    Micro Frontends https://martinfowler.com/articles/micro-frontends.html Integration approaches Server ...

  4. loj10087

    Southwestern Europe 2002,题面可参考 POJ 1201. 给定 n 个闭区间 [a_i,b_i] 和 n 个整数c_i .你需要构造一个整数集合Z ,使得对于任意i (1< ...

  5. java 静态资源,非静态资源,父类子类,构造方法之间的初始化循序

    java面试经常被问静态资源,非静态资源,父类子类,构造方法之间的执行顺序.下面添加两个类做个测试 class Parent { // 静态变量 public static String p_Stat ...

  6. Nginx配置WebSocket反向代理(Tomcat+Nginx)

    @toc WebSocket 和HTTP协议不同,但是WebSocket中的握手和HTTP中的握手兼容,它使用HTTP中的Upgrade协议头将连接从HTTP升级到WebSocket.这使得WebSo ...

  7. ESRI,空间数据处理,WKT,GeoJson

    ESRI,空间数据处理,WKT,GeoJson 一.WKT 二.GeoJson 三.WKT转GeoJson 四.GeoJson 转 WKT 一.WKT WKT(well-known text)是一种文 ...

  8. java生成xls

    ------------------------------------------------------初始化xls操纵类-------- import java.io.File; import ...

  9. ElasticSearch 介绍、Docker安装以及基本检索第三篇

    一.简介 1.1 什么是Elasticsearch? Elasticsearch是一个分布式的开源搜索和分析引擎, 适用于所有类型的数据,包括文本.数字.地理空间.结构化和啡结构化数据.Elastic ...

  10. 6127:Largest Average

    #include<bits/stdc++.h> using namespace std; int a[100001]; double ave[100001]; struct student ...