在不同的服务器不同的机器上做过很多次实验,分别遇到各种不一样的错误并且跑通Py-Faster-RCNN,因此,在这里做一个流程的汇总:

一、下载文件:

首先,文件的下载可以有两种途径:

1、需要在官网上下载路径:https://github.com/rbgirshick/py-faster-rcnn

该方法的下载之后文件夹:py-faster-rcnn/caffe-fast-rcnn/下可能是空白:这个时候你是需要继续用命令行进行下载的

cd caffe-fast-rcnn
git submodule update --init --recursive

2、在Ubuntu下直接进行命令行的下载:(个人更推荐这一方法:比较稳定)

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

二、编译CAFFE:

1、下载完成后我们进入py-faster-rcnn//lib 文件下编译:

cd $FRCN_ROOT/lib
make

2、在py-faster-rcnn/caffe-fast-rcnn/文件路径下,下载Makefile.config文件:

链接网址:https://dl.dropboxusercontent.com/s/6joa55k64xo2h68/Makefile.config?dl=0

3、改变里面两个参数:(不改变的话后面的编译可以进行,但是跑到后面的demo 的时候会发现一大堆的头文件没有包含进来,如下图)

所以改变下面两个参数非常有必要:

# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
# Unrelatedly, it's also recommended that you use CUDNN
USE_CUDNN := 1

4、编译caffe:

cd $FRCN_ROOT/caffe-fast-rcnn
make -j64

可能会出现错误,如下所示:

解决办法:进入自己根目录下原来的Caffe下面拷贝相应的文件进入caffe-fast-rcnn

1.将./include/caffe/util/cudnn.hpp 换成最新版的caffe里的cudnn的实现,即相应的cudnn.hpp.

2. 将./include/caffe/layers里的,所有以cudnn开头的文件,例如cudnn_conv_layer.hpp。   都替换成最新版的caffe里的相应的同名文件。

3.将./src/caffe/layer里的,所有以cudnn开头的文件,例如cudnn_lrn_layer.cu,cudnn_pooling_layer.cpp,cudnn_sigmoid_layer.cu。

都替换成最新版的caffe里的相应的同名文件。如下图所示:

继续上面工作:

编译成功!继续前面命令行的编译 :

make pycaffe

编译正确:继续后面步骤;

三、下载训练好的模型:

1、命令行下载:

cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

2、从ImageNet训练来的Caffe models (ZF, VGG16) pre-trained 模型下载命令(在SCRIPTS文件下包含下载的脚本,如果遇到错误一定是服务器上翻墙的问题)

./data/scripts/fetch_imagenet_models.sh

3、 从VOC 2007训练来的Faster R-CNN models trained 模型下载命令(同上)

./data/scripts/fetch_faster_rcnn_models.sh

4、设置好以上下载之后,我们的./data目录下会出现需要的模型:

四、跑通demo.py文件:

上面已经编译好了caffe并且下载做好了训练好的模型何必要数据:我们现在可以开始跑demo了:

cd $FRCN_ROOT
./tools/demo.py

跑通之后我们可以看到自己预测的图片的目标框:

五、我们不局限于跑通demo.py,我们需要了解demo.py文件里面的原理:

首先我们来切割demo.py文件里面的功能块:无非是:def vis_detections( ) 、def demo( ) 、def parse_args()

先来看一张功能解析图:

我们可以看到:demo.py文件的主流是黄色箭头、def vis_detections( ) 是紫色箭头、def demo( ) 是浅蓝色箭头、def parse_args() 是红棕色箭头。

随着箭头的延伸我们越来越深入了解里面的函数转换:其中:scores代表分数;boxes代表目标框对角两个点四个坐标值;dets代表各个框坐标和分数组成的矩阵、inds超过阈值符合要求的窗口对应的下标。

六、具体代码内容解释:

Po出一些详细的解释的手稿:

Ubuntu下跑通py-faster-rcnn、详解demo运作流程的更多相关文章

  1. 【Android 应用开发】Ubuntu 下 Android Studio 开发工具使用详解 (旧版本 | 仅作参考)

    . 基本上可以导入项目开始使用了 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/21035637 ...

  2. Ubuntu下Git从搭建到使用详解

    Ubuntu下Git从搭建到使用详解 一.git的搭建 (1).sudo apt-get update (2).sudo apt-get -y install git 符:安装最新版本方法: add- ...

  3. 【Android 应用开发】Ubuntu 下 Android Studio 开发工具使用详解

    . 基本上可以导入项目开始使用了 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/21035637 ...

  4. faster rcnn 详解

    转自:https://zhuanlan.zhihu.com/p/31426458 经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN ...

  5. [转]CNN目标检测(一):Faster RCNN详解

    https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...

  6. 物体检测丨Faster R-CNN详解

    这篇文章把Faster R-CNN的原理和实现阐述得非常清楚,于是我在读的时候顺便把他翻译成了中文,如果有错误的地方请大家指出. 原文:http://www.telesens.co/2018/03/1 ...

  7. Ubuntu下Apache+php+mysql网站架设详解

    目录 1 基础 2 安装 2.1 安装LAMP 2.2 图形化管理软件(可选) 2.2.1 安装webmin 2.2.2 安装phpmyadmin 3 配置文件路径 3.1 常用命令 3.2 配置ap ...

  8. Ubuntu下制作deb包的方法详解

    1  认识deb包 1.1   认识deb包 deb是Unix系统(其实主要是Linux)下的安装包,基于 tar 包,因此本身会记录文件的权限(读/写/可执行)以及所有者/用户组. 由于 Unix ...

  9. py faster rcnn+ 1080Ti+cudnn5.0

    看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后 ...

随机推荐

  1. [USACO13DEC]牛奶调度Milk Scheduling

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=4096 容易想到的一个测略就是,优先考虑结束时间小的牛.所以我们对所有牛按照结束时间排序.然 ...

  2. Linux sudo权限提升漏洞整改方法

    一.漏洞概述 1月26日,Sudo发布安全通告,修复了一个类Unix操作系统在命令参数中转义反斜杠时存在基于堆的缓冲区溢出漏洞.当sudo通过-s或-i命令行选项在shell模式下运行命令时,它将在命 ...

  3. Web自动化测试python环境中安装 --selenium安装、火狐和火狐驱动版本、谷歌和谷歌驱动版本、测试

    一.安装selenium Windows命令行(cmd)输入pip install selenium(无须指定版本默认最新)或 pip install selenium==3.141.0(可指定版本) ...

  4. Linux服务器内存池技术是如何实现的

    Linux服务器内存池技术是如何实现的

  5. In Search of an Understandable Consensus Algorithm" (https://raft.github.io/raft.pdf) by Diego Ongaro and John Ousterhout.

    In Search of an Understandable Consensus Algorithm" (https://raft.github.io/raft.pdf) by Diego ...

  6. https://channels.readthedocs.io/en/latest/tutorial/part_2.htmlhttps://channels.readthedocs.io/en/latest/tutorial/part_2.html

    https://channels.readthedocs.io/en/latest/tutorial/part_2.html

  7. token的分层图如下

    基于 token 的多平台身份认证架构设

  8. IntelliJ Idea 解决 Could not autowire. No beans of 'xxxx' type found 的错误提示

    IntelliJ Idea 解决 Could not autowire. No beans of 'xxxx' type found 的错误提示哈,在使用 @Autowired 时,今天又遇一坑,这俩 ...

  9. (万字好文)Dubbo服务熔断与降级的深入讲解&代码实战

    原文链接:(万字好文)Dubbo服务熔断与降级的深入讲解&代码实战 一.Dubbo服务降级实战 1 mock 机制 谈到服务降级,Dubbo 本身就提供了服务降级的机制:而 Dubbo 的服务 ...

  10. Linux内存运维操作及常用命令

    Linux内存运维操作及常用命令 1.问题诊断 1.1 什么是 Linux 服务器 Load Average? 1.2如何查看 Linux 服务器负载? 1.3服务器负载高怎么办? 1.4如何查看服务 ...