People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch. 
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins. 

Input

The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by two zeros.

Output

For each test case output the answer on a single line.

Sample Input

3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0

Sample Output

8
4

题意:给你n种面值的硬币,面值为a1...an,数量分别为c1...cn,求问,在这些硬币的组合下,能够多少种面值,该面值不超过m

思路:设d[i][j]——前i种硬币,凑成总值j时,第i种硬币所剩余的个数。(能否想到这样构造是个难点

   默认d[i][j] = -1,代表无法凑成总值j

   转移方程为,若d[i-1][j]≥0,代表前i-1种已能够凑成j,那么就不必花费第i种硬币,所以d[i][j] = c[i]

   否则就看d[i][j-a[i]]的值,显然如果j < a[i],那么d[i][j] = -1,否则d[i][j-a[i]] ≤ 0,代表此刻第i种硬币已使用完了,所以自然d[i][j] = -1;

   否则,d[i][j] = d[i][j-a[i]]-1;

   可以看到d[i][]的值只与d[i-1][]和d[i][]有关,所以我们可以采用一维数组的形式,从而能够节省内存空间。

AC代码:

 1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 using namespace std;
5 typedef unsigned long long ll;
6 const int maxn = 1e3 + 10;
7 const int inf = 0x3f3f3f3f;
8 const int maxx = 1e5 + 10;
9 int dp[maxx];
10 int a[maxn];
11 int c[maxn];
12 bool vis[maxx];
13 int main()
14 {
15 int n, m;
16 while(~scanf("%d %d", &n, &m),(n||m))
17 {
18
19 memset(dp, -1, sizeof(dp));
20 for(int i = 1; i <= n; ++i)
21 {
22 scanf("%d", a+i);
23 // printf("%d ", a[i]);
24 }
25 for(int i = 1; i <= n; ++i)
26 {
27 scanf("%d", c+i);
28 }
29 dp[0] = 0;
30 for(int i = 1; i <= n; ++i)
31 {
32 for(int j = 0; j <= m; ++j)
33 {
34 if(dp[j] >= 0)
35 {
36 dp[j] = c[i];
37 }
38
39 else if(j - a[i] >= 0 && dp[j - a[i]] > 0)
40 {
41 dp[j] = dp[j - a[i]] - 1;
42 }
43 }
44 }
45 int ans = 0;
46 for(int i = 1; i <= m; ++i)
47 {
48 // printf("%d ", dp[i]);
49 if(dp[i] >= 0) ++ans;
50 }
51 printf("%d\n",ans);
52 }
53 return 0;
54 }

转载博客:戳这里

POJ 1742 Coins 【可行性背包】【非原创】的更多相关文章

  1. POJ 1742 Coins (多重背包)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 28448   Accepted: 9645 Descriptio ...

  2. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  3. hdu 2844 poj 1742 Coins

    hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...

  4. [POJ 1742] Coins 【DP】

    题目链接:POJ - 1742 题目大意 现有 n 种不同的硬币,每种的面值为 Vi ,数量为 Ni ,问使用这些硬币共能凑出 [1,m] 范围内的多少种面值. 题目分析 使用一种 O(nm) 的 D ...

  5. 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  6. poj 1742 Coins (多重背包)

    http://poj.org/problem?id=1742 n个硬币,面值分别是A1...An,对应的数量分别是C1....Cn.用这些硬币组合起来能得到多少种面值不超过m的方案. 多重背包,不过这 ...

  7. Poj 1742 Coins(多重背包)

    一.Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dolla ...

  8. poj 1742 Coins(dp之多重背包+多次优化)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  9. POJ 1742 Coins 【多重背包DP】

    题意:有n种面额的硬币.面额.个数分别为A_i.C_i,求最多能搭配出几种不超过m的金额? 思路:dp[j]就是总数为j的价值是否已经有了这种方法,如果现在没有,那么我们就一个个硬币去尝试直到有,这种 ...

随机推荐

  1. 20.java设计模式之解释器模式

    基本需求 实现四则运算,如计算a+b-c+d的值 先输入表达式的形式,如a+b-c+d,要求表达式正确 再分别输出a,b,c,d的值 最后求出结果 传统方案 编写一个方法,接收表达式的形式,根据用户输 ...

  2. SEO大杀器rendertron安装

    前段时间做SEO的优化,使用的是GoogleChrome/rendertron,发现这个安装部署的时候还是会有一些要注意的地方,做个记录 为什么要使用rendertron 目前很多网站都是使用 vue ...

  3. xtrabakcup基本用法 安装、全量备份恢复、增量备份恢复

    xtrabackup备份原理以及工作流程 备份流程日志分析:1.##读取mysql配置文件2.## 扫描innodb日志lsn并复制inndodb系统表空间3.## 缓冲写出到数据文件并锁表4.## ...

  4. Spring Security 实战干货:AuthenticationManager的初始化细节

    1. 前言 今天有个同学告诉我,在Security Learning项目的day11分支中出现了一个问题,验证码登录和其它登录不兼容了,出现了No Provider异常.还有这事?我赶紧跑了一遍还真是 ...

  5. 一文打尽 Linux/Windows端口复用实战

    出品|MS08067实验室(www.ms08067.com) 本文作者:Spark(Ms08067内网安全小组成员) 定义:端口复用是指不同的应用程序使用相同端口进行通讯. 场景:内网渗透中,搭建隧道 ...

  6. 干货 | 高耦合场景下,Trip.com如何做支付设计与落地

    干货 | 高耦合场景下,Trip.com如何做支付设计与落地 https://mp.weixin.qq.com/s/VR9NTR3RpKVfmUPcwgMABg 原创 Ryann Liu 携程技术 2 ...

  7. malloc函数 链表 运行时才知道内存 动态内存

    https://baike.baidu.com/item/malloc函数 malloc的全称是memory allocation,中文叫动态内存分配,用于申请一块连续的指定大小的内存块区域以void ...

  8. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  9. 【LinuxShell】free 命令详解

    前言 free命令用来显示Linux中的内存使用信息,包括空闲的.已用的物理内存,swap内存,及被内核使用的buffer.在Linux系统监控的工具中,free命令是最经常使用的命令之一. 命令格式 ...

  10. 最简单直接地理解Java软件设计原则之依赖倒置原则

    理论性知识 定义 依赖倒置原则,Dependence Inversion Principle (DIP) 高层模块不应该依赖低层模块.二者都应该依赖其抽象. 抽象不应该依赖细节,细节应该依赖抽象. 针 ...