POJ 1742 Coins 【可行性背包】【非原创】
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
Input
Output
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
Sample Output
8
4
题意:给你n种面值的硬币,面值为a1...an,数量分别为c1...cn,求问,在这些硬币的组合下,能够多少种面值,该面值不超过m
思路:设d[i][j]——前i种硬币,凑成总值j时,第i种硬币所剩余的个数。(能否想到这样构造是个难点
默认d[i][j] = -1,代表无法凑成总值j
转移方程为,若d[i-1][j]≥0,代表前i-1种已能够凑成j,那么就不必花费第i种硬币,所以d[i][j] = c[i]
否则就看d[i][j-a[i]]的值,显然如果j < a[i],那么d[i][j] = -1,否则d[i][j-a[i]] ≤ 0,代表此刻第i种硬币已使用完了,所以自然d[i][j] = -1;
否则,d[i][j] = d[i][j-a[i]]-1;
可以看到d[i][]的值只与d[i-1][]和d[i][]有关,所以我们可以采用一维数组的形式,从而能够节省内存空间。
AC代码:
1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 using namespace std;
5 typedef unsigned long long ll;
6 const int maxn = 1e3 + 10;
7 const int inf = 0x3f3f3f3f;
8 const int maxx = 1e5 + 10;
9 int dp[maxx];
10 int a[maxn];
11 int c[maxn];
12 bool vis[maxx];
13 int main()
14 {
15 int n, m;
16 while(~scanf("%d %d", &n, &m),(n||m))
17 {
18
19 memset(dp, -1, sizeof(dp));
20 for(int i = 1; i <= n; ++i)
21 {
22 scanf("%d", a+i);
23 // printf("%d ", a[i]);
24 }
25 for(int i = 1; i <= n; ++i)
26 {
27 scanf("%d", c+i);
28 }
29 dp[0] = 0;
30 for(int i = 1; i <= n; ++i)
31 {
32 for(int j = 0; j <= m; ++j)
33 {
34 if(dp[j] >= 0)
35 {
36 dp[j] = c[i];
37 }
38
39 else if(j - a[i] >= 0 && dp[j - a[i]] > 0)
40 {
41 dp[j] = dp[j - a[i]] - 1;
42 }
43 }
44 }
45 int ans = 0;
46 for(int i = 1; i <= m; ++i)
47 {
48 // printf("%d ", dp[i]);
49 if(dp[i] >= 0) ++ans;
50 }
51 printf("%d\n",ans);
52 }
53 return 0;
54 }
转载博客:戳这里
POJ 1742 Coins 【可行性背包】【非原创】的更多相关文章
- POJ 1742 Coins (多重背包)
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 28448 Accepted: 9645 Descriptio ...
- POJ 1742 Coins(多重背包, 单调队列)
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- hdu 2844 poj 1742 Coins
hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...
- [POJ 1742] Coins 【DP】
题目链接:POJ - 1742 题目大意 现有 n 种不同的硬币,每种的面值为 Vi ,数量为 Ni ,问使用这些硬币共能凑出 [1,m] 范围内的多少种面值. 题目分析 使用一种 O(nm) 的 D ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- poj 1742 Coins (多重背包)
http://poj.org/problem?id=1742 n个硬币,面值分别是A1...An,对应的数量分别是C1....Cn.用这些硬币组合起来能得到多少种面值不超过m的方案. 多重背包,不过这 ...
- Poj 1742 Coins(多重背包)
一.Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dolla ...
- poj 1742 Coins(dp之多重背包+多次优化)
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- POJ 1742 Coins 【多重背包DP】
题意:有n种面额的硬币.面额.个数分别为A_i.C_i,求最多能搭配出几种不超过m的金额? 思路:dp[j]就是总数为j的价值是否已经有了这种方法,如果现在没有,那么我们就一个个硬币去尝试直到有,这种 ...
随机推荐
- 20.java设计模式之解释器模式
基本需求 实现四则运算,如计算a+b-c+d的值 先输入表达式的形式,如a+b-c+d,要求表达式正确 再分别输出a,b,c,d的值 最后求出结果 传统方案 编写一个方法,接收表达式的形式,根据用户输 ...
- SEO大杀器rendertron安装
前段时间做SEO的优化,使用的是GoogleChrome/rendertron,发现这个安装部署的时候还是会有一些要注意的地方,做个记录 为什么要使用rendertron 目前很多网站都是使用 vue ...
- xtrabakcup基本用法 安装、全量备份恢复、增量备份恢复
xtrabackup备份原理以及工作流程 备份流程日志分析:1.##读取mysql配置文件2.## 扫描innodb日志lsn并复制inndodb系统表空间3.## 缓冲写出到数据文件并锁表4.## ...
- Spring Security 实战干货:AuthenticationManager的初始化细节
1. 前言 今天有个同学告诉我,在Security Learning项目的day11分支中出现了一个问题,验证码登录和其它登录不兼容了,出现了No Provider异常.还有这事?我赶紧跑了一遍还真是 ...
- 一文打尽 Linux/Windows端口复用实战
出品|MS08067实验室(www.ms08067.com) 本文作者:Spark(Ms08067内网安全小组成员) 定义:端口复用是指不同的应用程序使用相同端口进行通讯. 场景:内网渗透中,搭建隧道 ...
- 干货 | 高耦合场景下,Trip.com如何做支付设计与落地
干货 | 高耦合场景下,Trip.com如何做支付设计与落地 https://mp.weixin.qq.com/s/VR9NTR3RpKVfmUPcwgMABg 原创 Ryann Liu 携程技术 2 ...
- malloc函数 链表 运行时才知道内存 动态内存
https://baike.baidu.com/item/malloc函数 malloc的全称是memory allocation,中文叫动态内存分配,用于申请一块连续的指定大小的内存块区域以void ...
- hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置
[手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...
- 【LinuxShell】free 命令详解
前言 free命令用来显示Linux中的内存使用信息,包括空闲的.已用的物理内存,swap内存,及被内核使用的buffer.在Linux系统监控的工具中,free命令是最经常使用的命令之一. 命令格式 ...
- 最简单直接地理解Java软件设计原则之依赖倒置原则
理论性知识 定义 依赖倒置原则,Dependence Inversion Principle (DIP) 高层模块不应该依赖低层模块.二者都应该依赖其抽象. 抽象不应该依赖细节,细节应该依赖抽象. 针 ...