People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch. 
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins. 

Input

The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by two zeros.

Output

For each test case output the answer on a single line.

Sample Input

3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0

Sample Output

8
4

题意:给你n种面值的硬币,面值为a1...an,数量分别为c1...cn,求问,在这些硬币的组合下,能够多少种面值,该面值不超过m

思路:设d[i][j]——前i种硬币,凑成总值j时,第i种硬币所剩余的个数。(能否想到这样构造是个难点

   默认d[i][j] = -1,代表无法凑成总值j

   转移方程为,若d[i-1][j]≥0,代表前i-1种已能够凑成j,那么就不必花费第i种硬币,所以d[i][j] = c[i]

   否则就看d[i][j-a[i]]的值,显然如果j < a[i],那么d[i][j] = -1,否则d[i][j-a[i]] ≤ 0,代表此刻第i种硬币已使用完了,所以自然d[i][j] = -1;

   否则,d[i][j] = d[i][j-a[i]]-1;

   可以看到d[i][]的值只与d[i-1][]和d[i][]有关,所以我们可以采用一维数组的形式,从而能够节省内存空间。

AC代码:

 1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 using namespace std;
5 typedef unsigned long long ll;
6 const int maxn = 1e3 + 10;
7 const int inf = 0x3f3f3f3f;
8 const int maxx = 1e5 + 10;
9 int dp[maxx];
10 int a[maxn];
11 int c[maxn];
12 bool vis[maxx];
13 int main()
14 {
15 int n, m;
16 while(~scanf("%d %d", &n, &m),(n||m))
17 {
18
19 memset(dp, -1, sizeof(dp));
20 for(int i = 1; i <= n; ++i)
21 {
22 scanf("%d", a+i);
23 // printf("%d ", a[i]);
24 }
25 for(int i = 1; i <= n; ++i)
26 {
27 scanf("%d", c+i);
28 }
29 dp[0] = 0;
30 for(int i = 1; i <= n; ++i)
31 {
32 for(int j = 0; j <= m; ++j)
33 {
34 if(dp[j] >= 0)
35 {
36 dp[j] = c[i];
37 }
38
39 else if(j - a[i] >= 0 && dp[j - a[i]] > 0)
40 {
41 dp[j] = dp[j - a[i]] - 1;
42 }
43 }
44 }
45 int ans = 0;
46 for(int i = 1; i <= m; ++i)
47 {
48 // printf("%d ", dp[i]);
49 if(dp[i] >= 0) ++ans;
50 }
51 printf("%d\n",ans);
52 }
53 return 0;
54 }

转载博客:戳这里

POJ 1742 Coins 【可行性背包】【非原创】的更多相关文章

  1. POJ 1742 Coins (多重背包)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 28448   Accepted: 9645 Descriptio ...

  2. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  3. hdu 2844 poj 1742 Coins

    hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...

  4. [POJ 1742] Coins 【DP】

    题目链接:POJ - 1742 题目大意 现有 n 种不同的硬币,每种的面值为 Vi ,数量为 Ni ,问使用这些硬币共能凑出 [1,m] 范围内的多少种面值. 题目分析 使用一种 O(nm) 的 D ...

  5. 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  6. poj 1742 Coins (多重背包)

    http://poj.org/problem?id=1742 n个硬币,面值分别是A1...An,对应的数量分别是C1....Cn.用这些硬币组合起来能得到多少种面值不超过m的方案. 多重背包,不过这 ...

  7. Poj 1742 Coins(多重背包)

    一.Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dolla ...

  8. poj 1742 Coins(dp之多重背包+多次优化)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  9. POJ 1742 Coins 【多重背包DP】

    题意:有n种面额的硬币.面额.个数分别为A_i.C_i,求最多能搭配出几种不超过m的金额? 思路:dp[j]就是总数为j的价值是否已经有了这种方法,如果现在没有,那么我们就一个个硬币去尝试直到有,这种 ...

随机推荐

  1. MYSQL(将数据加载到表中)

    1. 创建和选择数据库 mysql> CREATE DATABASE menagerie; mysql> USE menagerie Database changed 2. 创建表 mys ...

  2. 人工智能"眼睛"——摄像头

    摄像头机器视觉人工智能的"眼睛",其重要性在嵌入式领域不言而喻.但是如何理解和使用摄像头却是一个非常棘手的问题.本文主要针对调试摄像头过程中遇到的问题,对摄像头的基本原理及概述进行 ...

  3. Vue 标签Style 动态三元判断绑定

    <div  :style=" 1==1 ? 'display:block' : 'display:none' "></div> v-bind:style 的 ...

  4. http发送

    package cn.com.yitong.wdph.util; import java.io.BufferedReader;import java.io.InputStream;import jav ...

  5. 强制杀死进程后,进程相关的socket未必发送RST

    强制杀死进程后,进程相关的socket未必发送RST

  6. PowerBI数据建模时的交叉连接问题

    方案一.在PowerPivot中,将其中一张表复制多份,分别与另一张表做链接. 方案二.在PowerQuery中,做多次合并查询,把所有数据集中在一张表中,方便后面的数据分析. 思考:不仅仅是在Pow ...

  7. Scala-文件操作

    Scala-文件操作 一.遍历一个文件中的每一行 方法一: 使用Source.getLines返回的迭代器 方法二: 将Source.getLines返回的迭代器,转换成数组 方法三: 调用Sourc ...

  8. ScalikeJDBC,操作mysql数据,API

    ScalikeJDBC,操作mysql数据,API 一.构建maven项目,添加pom.xml依赖 二.resource文件下创建application.conf文件,并配置以下内容 三.操作mysq ...

  9. (7)Linux使用注意事项

    1.Linux 严格区分大小写 和 Windows 不同,Linux 是严格区分大小写的,包括文件名和目录名.命令.命令选项.配置文件设置选项等. 2.Windows 下的程序不能直接在 Linux ...

  10. Flink-v1.12官方网站翻译-P027-State Schema Evolution

    状态方案的演变 Apache Flink流媒体应用通常被设计为无限期或长时间运行.与所有长期运行的服务一样,应用程序需要更新以适应不断变化的需求.这对于应用程序所针对的数据模式也是一样的,它们会随着应 ...