tomorrow是我最近在用的一个爬虫利器,该模块属于第三方的模块,使用起来非常的方便,只需要用其中的threads方法作为装饰器去修饰一个普通的函数,既可以达到并发的效果,本篇将用实例来展示tomorrow的强大之处。后面文章将对tomorrow的实现原理做进一步的分析。

1.安装第三方包

pip install requests_html #网络请求包
pip install fake-useragent #获取useragent包
pip install tomorrow

2.普通下载方式

在这里我们用20个电影网址进行测试,并获取其标题,计算所用的时间

start=time.time()
for i in url_list:
print(get_xpath(get_req(i),"//title//text()"))
end=time.time()
print("普通方式花费时间",end-start)

get_req是我定义的访问网络的一个方法,get_xpath是为例使用xpath表达式获取其结果,这里是获取网址的标题。20个电影网址普通方式访问的结果在8-9秒之间。

3使用tomorrow以后

start2 = time.time()
req_list = []
for url in url_list:
req = async_get_req(url)
req_list.append(req) for req in req_list:
print(get_xpath(req, "//title//text()"))
end2 = time.time()
print("并发后花费时间", end2 - start2)

如果我们想要使用tomorrow,就要尽量减少耗时操作,访问网络并等待其回应就是一个非常耗时的工作,在这里我们需要做的是,并发的时候除了访问网络不要做其他操作,然后我们把获取的请求存一个列表,然后再去循环做其他操作,看不懂我说的没关系,直接看下面代码并尝试几次就明白了。用时为2s-3s

4.测试结果对比 来看完整代码

import time
from requests_html import HTMLSession
from fake_useragent import UserAgent as ua
from tomorrow import threads headers = {"User-Agent": ua().Chrome}
session = HTMLSession()
url_list = ["https://movie.douban.com",
"http://www.1905.com/",
"http://www.mtime.com/",
"https://www.dy2018.com/",
"http://dytt8.net",
"https://www.piaohua.com/",
"http://maoyan.com",
"https://www.xigua110.com/",
"https://www.vmovier.com/",
"http://movie.kankan.com/",
"https://107cine.com/",
"http://movie.youku.com",
"http://film.qq.com","https://dianying.taobao.com/",
"http://www.wandafilm.com/",
"http://www.dygang.net/","http://dianying.2345.com/",
] def get_req(url, timeout=10):
req = session.get(url, headers=headers, timeout=timeout)
if req.status_code == 200:
return req @threads(5)
def async_get_req(url, timeout=10):
req = session.get(url, headers=headers, timeout=timeout)
if req.status_code == 200:
return req def get_xpath(req, xpath_str):
return req.html.xpath(xpath_str)[0].strip().replace("\n", "") start=time.time()
for i in url_list:
print(get_xpath(get_req(i),"//title//text()"))
end=time.time()
print("普通方式花费时间",end-start) start2 = time.time()
req_list = []
for url in url_list:
req = async_get_req(url)
req_list.append(req) for req in req_list:
print(get_xpath(req, "//title//text()"))
end2 = time.time()
print("并发后花费时间", end2 - start2)

运行三次上面的程序记录下每次的结果

第一次:
普通方式花费时间 7.883908271789551
并发后花费时间 2.2888755798339844
第二次:
普通方式花费时间 8.522203207015991
并发后花费时间 2.4674007892608643
第三次:
普通方式花费时间 9.062756061553955
并发后花费时间 2.8703203201293945

tomorrow使用起来很简单,在普通的函数上面加个threads装饰器即可以实现并发效果, 括号中的数字是表示并发的次数,经过我的测试并不是并发次数越多越好,你需要选择一个中间点,因为还会受到网速的影响,我觉得一般并发数5-10就好.

转载自:https://www.cnblogs.com/c-x-a/p/9572326.html

python并发利器tomorrow的更多相关文章

  1. Sublime Text配置Python开发利器

    Sublime Text配置Python开发利器 收好了 自动提示 jedi 代码格式化 Python PEP8 autoformat 如果还需要在shell中搞搞研究的话,ipython将是很好的选 ...

  2. python 开发利器

    UliPad 初体验----python 开发利器 Posted on 2013-10-28 22:36 虫师 阅读(436) 评论(3) 编辑 收藏 学习python 有段时间,最近博客更新比较慢了 ...

  3. python爬虫利器Selenium使用详解

    简介: 用pyhon爬取动态页面时普通的urllib2无法实现,例如下面的京东首页,随着滚动条的下拉会加载新的内容,而urllib2就无法抓取这些内容,此时就需要今天的主角selenium. Sele ...

  4. (转)Python爬虫利器一之Requests库的用法

    官方文档 以下内容大多来自于官方文档,本文进行了一些修改和总结.要了解更多可以参考 官方文档 安装 利用 pip 安装 $ pip install requests 或者利用 easy_install ...

  5. Python并发编程__多进程

    Python并发编程_多进程 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大 ...

  6. Python并发编程的几篇文章

    Python几种并发实现方案的性能比较 http://www.elias.cn/Python/PyConcurrency?from=Develop.PyConcurrency python并发编程 h ...

  7. Python并发编程之深入理解yield from语法(八)

    大家好,并发编程 进入第八篇. 直到上一篇,我们终于迎来了Python并发编程中,最高级.最重要.当然也是最难的知识点--协程. 当你看到这一篇的时候,请确保你对生成器的知识,有一定的了解.当然不了解 ...

  8. Python并发目录

    Python并发目录 Python-socket网络编程 Python网络编程-IO阻塞与非阻塞及多路复用 Python进程-理论 Python进程-实现 Python进程间通信 Python进程池 ...

  9. Python监控服务器利器--psutil

    Python监控服务器利器--psutil 服务器的监控通过安装一些常用的监控软件之外,有时也需要运行一些shell或Python脚本:shell下可以使用系统自带的ps/free/top/df等sh ...

随机推荐

  1. 关于vmwaretools

    今天安装Ubuntu16.04-i386,vmware15.5,使用的快速安装,然后安装vmwaretools出现问题:无法复制粘贴,顶部管理"重新安装vmware-tools"选 ...

  2. Leetcode 30 串联所有单词的子串 滑动窗口+map

    见注释.滑动窗口还是好用. class Solution { public: vector<int> findSubstring(string s, vector<string> ...

  3. C++中的explicit

    首先, C++中的explicit关键字只能用于修饰只有一个参数的类构造函数, 它的作用是表明该构造函数是显示的, 而非隐式的, 跟它相对应的另一个关键字是implicit, 意思是隐藏的,类构造函数 ...

  4. 这些不可不知的JVM知识,我都用思维导图整理好了

    JVM是面试中必问的部分,本文通过思维导图以面向面试的角度整理JVM中不可不知的知识. 先上图: 1.JVM基本概念 1.1.JVM是什么 JVM 的全称是 「Java Virtual Machine ...

  5. Linked List & List Node All In One

    Linked List & List Node All In One 链表 & 节点 链表类型 单链表 双链表 环形链表 / 循环链表 Singly Linked List (Uni- ...

  6. 图解 git workflow

    图解 git workflow 图解 git 工作流 git-flow https://www.git-tower.com/learn/git/ebook/cn/command-line/advanc ...

  7. git config [section] solutions

    git config [section] solutions fix git [section] warnings global config $ vim ~/.gitconfig [user] em ...

  8. Windows 10 滚动截图工具

    Windows 10 滚动截图工具 Edge & Note & Clip https://www.runoob.com/docker/docker-architecture.html ...

  9. 3D 室内装修线设计软件

    3D 室内装修线设计软件 WebGL & canvas https://threejs.org/ xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用 ...

  10. Service Worker in Action

    Service Worker in Action https://caniuse.com/#feat=serviceworkers Service Workers 1 W3C Candidate Re ...