【图像增强】CLAHE 限制对比度自适应直方图均衡化
文章目录:
1 基本概述
CLAHE是一个比较有意思的图像增强的方法,主要用在医学图像上面。之前的比赛中,用到了这个,但是对其算法原理不甚了解。在这里做一个复盘。
CLAHE起到的作用简单来说就是增强图像的对比度的同时可以抑制噪声
CLAHE的英文是Contrast Limited Adaptive Histogram Equalization 限制对比度的自适应直方图均衡。在学习这个之前,我们要先学习一下下面的前置算法:
- 【Contrast Stretching】:对比度拉伸;
- 【HE】:直方图均衡;
- 【CLHE】:对比度限制的HE
- 【AHE】:自适应直方图均衡化
2 竞赛中的CLAHE实现
在比赛中,我们往往使用albumentations库函数进行图像的预处理,因为这个预处理库的运行速度非常的快,而且封装了大量的图像增强的方法。图像任务的话这个库函数非常滴奈斯。
本文中会介绍一下albumentations库函数实现CLAHE的代码,然后再用openCV实现。
import albumentations
RESIZE_SIZE = 1024 # or 768
train_transform = albumentations.Compose([
albumentations.Resize(RESIZE_SIZE, RESIZE_SIZE),
albumentations.OneOf([
albumentations.RandomGamma(gamma_limit=(60, 120), p=0.9),
albumentations.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.9),
albumentations.CLAHE(clip_limit=4.0, tile_grid_size=(4, 4), p=0.9),
]),
albumentations.HorizontalFlip(p=0.5),
albumentations.ShiftScaleRotate(shift_limit=0.2, scale_limit=0.2, rotate_limit=20,
interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_CONSTANT, p=1),
albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0)
])
这是一个图像增强的pipline,其中的流程是:
- Resize就是拉伸图片修改尺寸
- RandomGamma就是使用gamma变换
- RandomBrightnessContrast就是随机选择图片的对比度和亮度
- CLAHE是一种对比度受限情况下的自适应直方图均衡化算法
- HorizontalFlip水平翻转
- ShiftScaleRotate这个就是平移缩放旋转三合一,给力!
- Normalize这个就是图像归一化了。
本文主要讲解的就是CLAHE这个直方图均衡化的算法。
3 openCV绘制直方图
使用openCV的代码来获取一个图片的灰度直方图:
import cv2
import numpy as np
import matplotlib.pyplot as plt
def plot(grayHist):
plt.plot(range(256), grayHist, 'r', linewidth=1.5, c='red')
y_maxValue = np.max(grayHist)
plt.axis([0, 255, 0, y_maxValue]) # x和y的范围
plt.xlabel("gray Level")
plt.ylabel("Number Of Pixels")
plt.show()
if __name__ == "__main__":
# 读取图像并转换为灰度图
img = cv2.imread(r'E:\dog.jpg', 0)
# 图像的灰度级范围是0~255
grayHist = cv2.calcHist([img], [0], None, [256], [0, 256])
# 绘制直方图
plot(grayHist)
狗子的图片就是左边的这个,发现灰度值在100左右的像素个数最多:
4 对比度Contrast
在生活中,我们在PS图片的时候,往往会用到图片对比度,那么这个究竟是什么东西呢?
图片对比度指的是一幅图片中最亮的白和最暗的黑之间的反差大小。常用的定量度量方法是Michelson对比度:
\(C = \frac{I_{max}-I_{min}}{I_{max}+I_{min}}\)
- 当一幅图像最白和最黑像素灰度都是128时,图像对比度最低,C=0;
- 当一幅图像最白像素灰度=255,最黑像素灰度=0时,图像对比度最高,C=1.0。
【英文中如何描述高对比度与低对比度的?】
当一幅图像最白和最黑像素灰度都在128附近浮动时,图像的直方图集中在中间的几个桶,图像看起来灰蒙蒙的,英语中使用dull描述这种效果。相反,如果图像中黑白像素的跨度较大,则图像富有通透感,英语中使用clarity描述这种效果。
图片中左边的图片就是dull,灰度直方图也是集中在中间区域,这就是低对比度;最右边的图片是clarity,直方图感觉是被拉开了、舒展了,这就是高对比度。
5 Contrast Stretching
我们已经搞懂了图片不通透的原因,就是灰度直方图不够舒展,集中在了一个小区域,这样我们可以通过数学的方法把低对比度的图像提高对比度。最简单的方法就是对比度拉伸(Contrast Stretching)。
现在有这样的一个低对比度的图片,其灰度直方图集中在中间的区域。然后我们想把这个灰度直方图拉伸到整个0~255的区间,我们怎么做呢?(这里假设这个低对比度的图片的灰度集中在100到200之间好了)
用一个这样的分段线性函数,来处理上面那个低对比度图片的时候,可以把(r2,s2)极端的设置成(100,0),把(r3,s3)设置成(200,255),这样把原来的直方图通过这个函数映射,其实就是把100~200范围线性拉伸到0~255这么大。
这种方法最简单,简单的说就是线性拉伸直方图。对于某些图片可以起到效果:
但是对于比较复杂的图片,并没有什么效果:
6 Histogram Equalization
对比度解决不了的问题,我们来用HE试试。Histogram Equalization的思想就是用数学方法重新调整像素的亮度分布,来保证直方图具有最大的动态范围,也就是尽可能地让灰度直方图是一个矩形!
其实Contrast Stretching也是做的一样的事情,只是它用的简单的分段线性函数来重新映射灰度,现在用更巧妙地方法。
【定义一些数学符号】
- \(p(x)\):调整之前的直方图的概率密度函数
- \(q(y)\):调整之后的直方图的概率密度函数,可以看出来,是一个常数,所以用C来表示
因为不管怎么转换,概率密度函数的累积总是1,而转换前后的取值范围都是[0,1],所以可以得到:
\(\int_0^1{p(x)dx=\int_0^1Cdy=1}\)
(当然,这里可以很快的算出来,C=1)
我们希望找到,一个x和y的映射关系,也就是\(y=f(x)\),不难想到,这个\(f(x)\)就应该是\(p(x)\)的累积分布函数,也就是:
\(f(x)=\int_0^xp(u)du\)
这个图中,直观的展示了,任何一个直方图,只要按照该直方图的累积分布函数进行拉伸,就可以得到一个矩形的直方图。
下面是一个利用这样的方法增强对比度的例子:
可以发现,在直方图密集的地方,就会被拉的松散
再看另外一个例子:
可以发现,使用HE之后的直方图的累积分布函数,是一个直线
7 CLAHE
HE算法在一种情况下,效果不好,如果一个图片中有大块的暗区或者亮区的话,效果非常不好。这个的原因,也非常好理解,因为HE其实要求一个图片中必须有10%的最亮的像素点,必须有10%第二亮的像素点,必须有10%第三亮的像素点……假设有一张纯黑的图片,你想想经过HE处理之后,会出现什么情况?答案就是一部分黑的像素也会被强行搞成白的
下面是一个例子,发现经过HE之后的图片出现了大量噪点:
【Histogram Equalization的缺点】
- 对于灰度非常集中的区域,直方图会被拉的非常稀疏,从而导致对比度增强过大,成为噪音;
- 一些区域调整后丢失细节
7.1 Contrast Limited HE
针对第一个问题,提出了CLHE,加入对比度限制,其实原理很简单置直方图分布的阈值,将超过该阈值的分布“均匀”分散至概率密度分布上,由此来限制转换函数(累计直方图)的增幅。
这样的话,直方图就不会出现概率密度函数过大的区域,从而避免了某些集中区域被拉得过于系数。
7.2 Adaptive HE
Adaptive HE的基本思想是将原始图片划分成子区域,然后对每个子区域进行HE变换。 当然,这样做的问题应该是显而易见的:
每一块区域之间都会有非常大的不连续。因此为了解决这个问题,提出了优化方案双线性插值的AHE ,然后这个基础上再使用CLHE的截断对比度的思想,就变成了我们现在的CLAHE算法。
【使用双线性插值的方案】
将图像分为多个矩形块大小,对于每个矩形块子图,分别计算其灰度直方图和对应的变换函数(累积直方图)
将原始图像中的像素按照分布分为三种情况处理:
- 红色区域中的像素按照其所在子图的变换函数进行灰度映射
- 绿色区域中的像素按照所在的两个相邻子图变换函数变换后进行线性插值得到
- 紫色区域中的像素按照其所在的四个相邻子图变换函数变换后双线性插值得到
8 结果对比与openCV实现
【这里是openCV实现HE的方法】
img = cv.imread(r'E:\dog.jpg', 0)
equ = cv.equalizeHist(img) # 输入为灰度图
res = np.hstack((img, equ)) # stacking images side-by-side
cv.imwrite('res.png',res)
运行结果:
【openCV实现CLAHE】
img = cv2.imread(r'E:\dog.jpg', 0)
# create a CLAHE object
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl1 = clahe.apply(img)
res = np.hstack((img, cl1))
cv2.imwrite('res.jpg', res)
结果是:
【更多对比的例子】
- 左边是原图
- 中间是HE,有过亮过暗的区域;
- 右边是CLAHE,没有过亮过暗的区域。
然后我在另外一个博文,找到了上面那个例子的彩色版本哈哈:
参考文章:
- https://zhuanlan.zhihu.com/p/98541241
- https://blog.csdn.net/lwx309025167/article/details/103770834
- https://blog.csdn.net/u013066730/article/details/82970380
- https://www.cnblogs.com/imageshop/archive/2013/04/07/
- http://helloworld2020.net/393/
【图像增强】CLAHE 限制对比度自适应直方图均衡化的更多相关文章
- 图像增强 | CLAHE 限制对比度自适应直方图均衡化
1 基本概述 CLAHE是一个比较有意思的图像增强的方法,主要用在医学图像上面.之前的比赛中,用到了这个,但是对其算法原理不甚了解.在这里做一个复盘. CLAHE起到的作用简单来说就是增强图像的对比度 ...
- 对比度受限的自适应直方图均衡化(CLAHE)
直方图均衡化(HE)是一种很常用的直方图类方法,基本思想是通过图像的灰度分布直方图确定一条映射曲线,用来对图像进行灰度变换,以达到提高图像 对比度的目的.该映射曲线其实就是图像的累计分布直方图(CDF ...
- 【16位RAW图像处理三】直方图均衡化及局部直方图均衡用于16位图像的细节增强。
通常我们生活中遇到的图像,无论是jpg.还是png或者bmp格式,一般都是8位的(每个通道的像素值范围是0-255),但是随着一些硬件的发展,在很多行业比如医疗.红外.航拍等一些场景下,拥有更宽的量化 ...
- 限制对比度自适应直方图均衡(Contrast Limited Adaptive histgram equalization/CLAHE)
转自:http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html 一.自适应直方图均衡化(Adaptive histgram eq ...
- 机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)
1. cv2.equalizeHist(img) # 表示进行直方图均衡化 参数说明:img表示输入的图片 2.cv2.createCLAHA(clipLimit=8.0, titleGridSiz ...
- 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)
一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则 ...
- S0.6 直方图均衡化
S0.6 直方图均衡化 直方图均衡化能提高图像的质量 累积直方图 这是后面均衡化所要知道的先验知识. 如果说直方图统计的是等于像素值的数量,那么累积直方图统计的就是小于等于像素值的数量 均衡化步骤 我 ...
- OpenCV计算机视觉学习(9)——图像直方图 & 直方图均衡化
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 1, ...
- OpenCV2马拉松第9圈——再谈对照度(对照度拉伸,直方图均衡化)
收入囊中 lookup table 对照度拉伸 直方图均衡化 葵花宝典 lookup table是什么东西呢? 举个样例,假设你想把图像颠倒一下,f[i] = 255-f[i],你会怎么做? for( ...
随机推荐
- TF签名是什么?比企业签名好在哪里?
现在苹果企业签名的服务大致分为三类,苹果企业签名.超级签名和TF签名,而TF签名TF签名又称 TestFlight 签名,是目前最稳定的签名方式. 「优势」 关键词:零风险;限制少;安 ...
- asp.net core 3.1多种身份验证方案,cookie和jwt混合认证授权
开发了一个公司内部系统,使用asp.net core 3.1.在开发用户认证授权使用的是简单的cookie认证方式,然后开发好了要写几个接口给其它系统调用数据.并且只是几个简单的接口不准备再重新部署一 ...
- Android监听器无法跳转的可能原因之一。。。
主菜前的厨师前言: 各位大牛,牛崽崽,这是本牛崽第一次写博客,牛崽崽我初出茅庐,但是我会很用心的写自己的每一份随笔,写的不好的大家见谅. 今天就来说说本牛崽在实现监听器时遇到的问题: 本牛崽因为也是刚 ...
- Android Studio简单的登陆界面
在app->src->main->java里面找到MainActivity.java,将鼠标放到activity-main上按住Ctrl后单击跳转到activity-main.xml ...
- Python画各种 3D 图形Matplotlib库
回顾 2D 作图 用赛贝尔曲线作 2d 图.此图是用基于 Matplotlib 的 Path 通过赛贝尔曲线实现的,有对赛贝尔曲线感兴趣的朋友们可以去学习学习,在 matplotlib 中,figur ...
- The Definitive Guide to Ruby's C API The Ruby C API Running Ruby in C Running C in Ruby
最近在研究如何在C/C++中 嵌入ruby脚本,很感谢找到了一篇文章,分享一下. The Definitive Guide to Ruby's C API
- 学长小清新题表之UOJ 14.DZY Loves Graph
学长小清新题表之UOJ 14.DZY Loves Graph 题目描述 \(DZY\)开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 ...
- 在GitHub上删除仓库 or 项目,基操!!
创建错误或者想要抛弃某个仓库or项目,点击选择项目,选择Setting页面,左侧方框Option页拉到底: 你就可以看到一个红色的危险域,called Danger Zone,这不禁让我想到了黑子篮球 ...
- 微信小程序之蓝牙广播信息
期初第一次做蓝牙开锁的时候遇到的最尖锐的问题就是ios设备如何对获取的广播信息进行读取,大概用了4中方式,都无法解决,最后不得不求助官方人员.给了一个方法,大家可以参考.在此附图: 由于mac地址是6 ...
- swagger2配置详解
1.写在controller上的注解 1.1 @Api 代码 @Api(tags = "用户相关接口", description = "提供用户相关的 Rest API& ...