基于prometheus的微服务指标监控

服务上线后我们往往需要对服务进行监控,以便能及早发现问题并做针对性的优化,监控又可分为多种形式,比如日志监控,调用链监控,指标监控等等。而通过指标监控能清晰的观察出服务指标的变化趋势,了解服务的运行状态,对于保证服务稳定起着非常重要的作用

prometheus是一个开源的系统监控和告警工具,支持强大的查询语言PromQL允许用户实时选择和汇聚时间序列数据,时间序列数据是服务端通过HTTP协议主动拉取获得,也可以通过中间网关来推送时间序列数据,可以通过静态配置文件或服务发现来获取监控目标

Prometheus 的架构

Prometheus 的整体架构以及生态系统组件如下图所示:

Prometheus Server直接从监控目标中或者间接通过推送网关来拉取监控指标,它在本地存储所有抓取到样本数据,并对此数据执行一系列规则,以汇总和记录现有数据的新时间序列或生成告警。可以通过 Grafana 或者其他工具来实现监控数据的可视化

go-zero基于prometheus的服务指标监控

go-zero 框架中集成了基于prometheus的服务指标监控,下面我们通过go-zero官方的示例shorturl来演示是如何对服务指标进行收集监控的:

  • 第一步需要先安装Prometheus,安装步骤请参考官方文档
  • go-zero默认不开启prometheus监控,开启方式很简单,只需要在shorturl-api.yaml文件中增加配置如下,其中Host为Prometheus Server地址为必填配置,Port端口不填默认9091,Path为用来拉取指标的路径默认为/metrics
Prometheus:
Host: 127.0.0.1
Port: 9091
Path: /metrics
  • 编辑prometheus的配置文件prometheus.yml,添加如下配置,并创建targets.json
- job_name: 'file_ds'
file_sd_configs:
- files:
- targets.json
  • 编辑targets.json文件,其中targets为shorturl配置的目标地址,并添加了几个默认的标签
[
{
"targets": ["127.0.0.1:9091"],
"labels": {
"job": "shorturl-api",
"app": "shorturl-api",
"env": "test",
"instance": "127.0.0.1:8888"
}
}
]
  • 启动prometheus服务,默认侦听在9090端口
prometheus --config.file=prometheus.yml
  • 在浏览器输入http://127.0.0.1:9090/,然后点击Status -> Targets即可看到状态为Up的Job,并且Lables栏可以看到我们配置的默认的标签

通过以上几个步骤我们完成了prometheus对shorturl服务的指标监控收集的配置工作,为了演示简单我们进行了手动的配置,在实际的生产环境中一般采用定时更新配置文件或者服务发现的方式来配置监控目标,篇幅有限这里不展开讲解,感兴趣的同学请自行查看相关文档

go-zero监控的指标类型

go-zero中目前在http的中间件和rpc的拦截器中添加了对请求指标的监控。

主要从请求耗时和请求错误两个维度,请求耗时采用了Histogram指标类型定义了多个Buckets方便进行分位统计,请求错误采用了Counter类型,并在http metric中添加了path标签rpc metric中添加了method标签以便进行细分监控。

接下来演示如何查看监控指标:

首先在命令行多次执行如下命令

curl -i "http://localhost:8888/shorten?url=http://www.xiaoheiban.cn"

打开Prometheus切换到Graph界面,在输入框中输入{path="/shorten"}指令,即可查看监控指标,如下图

我们通过PromQL语法查询过滤path为/shorten的指标,结果中显示了指标名以及指标数值,其中http_server_requests_code_total指标中code值为http的状态码,200表明请求成功,http_server_requests_duration_ms_bucket中对不同bucket结果分别进行了统计,还可以看到所有的指标中都添加了我们配置的默认指标

Console界面主要展示了查询的指标结果,Graph界面为我们提供了简单的图形化的展示界面,在实际的生产环境中我们一般使用Grafana做图形化的展示

grafana可视化界面

grafana是一款可视化工具,功能强大,支持多种数据来源Prometheus、Elasticsearch、Graphite等,安装比较简单请参考官方文档,grafana默认端口3000,安装好后再浏览器输入http://localhost:3000/,默认账号和密码都为admin

下面演示如何基于以上指标进行可视化界面的绘制:

  • 点击左侧边栏Configuration->Data Source->Add data source进行数据源添加,其中HTTP的URL为数据源的地址

  • 点击左侧边栏添加dashboard,然后添加Variables方便针对不同的标签进行过滤筛选比如添加app变量用来过滤不同的服务

  • 进入dashboard点击右上角Add panel添加面板,以path维度统计接口的qps

  • 最终的效果如下所示,可以通过服务名称过滤不同的服务,面板展示了path为/shorten的qps变化趋势

总结

以上演示了go-zero中基于prometheus+grafana服务指标监控的简单流程,生产环境中可以根据实际的场景做不同维度的监控分析。现在go-zero的监控指标主要还是针对http和rpc,这对于服务的整体监控显然还是不足的,比如容器资源的监控,依赖的mysql、redis等资源的监控,以及自定义的指标监控等等,go-zero在这方面后续还会持续优化。希望这篇文章能够给您带来帮助

项目地址:

https://github.com/tal-tech/go-zero

基于 prometheus 的微服务指标监控的更多相关文章

  1. Spring Boot (九): 微服务应用监控 Spring Boot Actuator 详解

    1. 引言 在当前的微服务架构方式下,我们会有很多的服务部署在不同的机器上,相互是通过服务调用的方式进行交互,一个完整的业务流程中间会经过很多个微服务的处理和传递,那么,如何能知道每个服务的健康状况就 ...

  2. 通过Dapr实现一个简单的基于.net的微服务电商系统

    本来想在Dpar 1.0GA时发布这篇文章,由于其他事情耽搁了放到现在.时下微服务和云原生技术如何如荼,微软也不甘示弱的和阿里一起适时推出了Dapr(https://dapr.io/),园子里关于da ...

  3. 通过Dapr实现一个简单的基于.net的微服务电商系统(十一)——一步一步教你如何撸Dapr之自动扩/缩容

    上一篇我们讲到了dapr提供的bindings,通过绑定可以让我们的程序轻装上阵,在极端情况下几乎不需要集成任何sdk,仅需要通过httpclient+text.json即可完成对外部组件的调用,这样 ...

  4. 基于.NET CORE微服务框架 -surging的介绍和简单示例 (开源)

    一.前言 至今为止编程开发已经11个年头,从 VB6.0,ASP时代到ASP.NET再到MVC, 从中见证了.NET技术发展,从无畏无知的懵懂少年,到现在的中年大叔,从中的酸甜苦辣也只有本人自知.随着 ...

  5. 基于 Docker 的微服务架构实践

    本文来自作者 未闻 在 GitChat 分享的{基于 Docker 的微服务架构实践} 前言 基于 Docker 的容器技术是在2015年的时候开始接触的,两年多的时间,作为一名 Docker 的 D ...

  6. [置顶] Docker学习总结(7)——云端基于Docker的微服务与持续交付实践

    本文根据[2016 全球运维大会•深圳站]现场演讲嘉宾分享内容整理而成 讲师简介 易立 毕业于北京大学,获得学士学位和硕士学位:目前负责阿里云容器技术相关的产品的研发工作. 加入阿里之前,曾在IBM中 ...

  7. ASP.NET Core基于K8S的微服务电商案例实践--学习笔记

    摘要 一个完整的电商项目微服务的实践过程,从选型.业务设计.架构设计到开发过程管理.以及上线运维的完整过程总结与剖析. 讲师介绍 产品需求介绍 纯线上商城 线上线下一体化 跨行业 跨商业模式 从0开始 ...

  8. 传统保险企业基于 Dubbo 的微服务实践

    本文整理自中国人寿保险(海外)股份有限公司深圳中心技术总监家黄晓彬在 Dubbo 社区开发者日深圳站的现场分享. 中国人寿保险(海外)股份有限公司负责香港.澳门.新加坡和印尼的业务开发,和国内业务不同 ...

  9. 基于DDD的微服务设计和开发实战

    你是否还在为微服务应该拆多小而争论不休?到底如何才能设计出收放自如的微服务?怎样才能保证业务领域模型与代码模型的一致性?或许本文能帮你找到答案. 本文是基于 DDD 的微服务设计和开发实战篇,通过借鉴 ...

随机推荐

  1. 网络端口及nmap扫描

    端口: 计算机与外界交流的出口,在渗透测试当中常用的端口号: 21号端口FTP:文件传输协议 23号端口Telent :远程登录接口 53号端口 DNS: 域名端口 80号端口HTTP:超文本传输协议 ...

  2. Spring学习(九)--Spring的AOP

    1.配置ProxyFactoryBean Spring IOC容器中创建Spring AOP的方法. (1)配置ProxyFactoryBean的Advisor通知器 通知器实现定义了对目标对象进行增 ...

  3. Python-集合 字典-set dict fronzenset

    集合 set 1. 无序 2. 去重 3. 定义空集 set() numbers = {1, 3, 4, 5, 6, 5, 4, 4, 7, 8} print(numbers) print(numbe ...

  4. 理解RESTful:理论与最佳实践

    什么是 REST 什么是 RESTful Richardson 成熟度模型 RESTful API 设计最佳实践 补充:HTTP 状态码及说明 什么是 REST REST 一词,是由 HTTP 协议的 ...

  5. 基于Huggingface使用BERT进行文本分类的fine-tuning

    随着BERT大火之后,很多BERT的变种,这里借用Huggingface工具来简单实现一个文本分类,从而进一步通过Huggingface来认识BERT的工程上的实现方法. 1.load data tr ...

  6. 040 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 02 while循环的执行流程

    040 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 02 while循环的执行流程 本文知识点:while循环的执行流程 三种循环结构中的第一种--wh ...

  7. 《C++primerplus》第7章练习题

    1.用户不断输入两个数,计算调和平均数,直到其中一个数为0. #include<iostream> using namespace std; double harm_mean(double ...

  8. LiteOS-任务篇

    目录 前言 链接 参考 笔录草稿 基本概念 任务相关概念 LiteOS 任务运作机制 内核初始化 创建任务 创建任务有两种方案 任务相关函数 任务开发流程 创建创建任务 部分源码 例子 创建任务的任务 ...

  9. 版本控制系统之git

    一.简介 git是Linux内核项目发起者linus用C语言写的,主要用来做项目的版本控制追踪:git是无中心节点的分布式版本控制系统,也是目前很流行的版本控制系统:其安装简单,使用简单:相比传统的c ...

  10. 小白使用Hystrix

    Hystrix是什么东西?百度一下: 没错,hystrix是豪猪的意思,作为SpringCloud微服务系统中保持服务稳定的重要组件,正如它的名字一样,它对整个系统起到了保护的作用. 在许多文章当中把 ...