一,Python中获得当前目录和上级目录

获取当前文件的路径:

from os import path
d = path.dirname(__file__) #返回当前文件所在的目录
# __file__ 为当前文件, 若果在ide中运行此行会报错,可改为 #d = path.dirname('.')

获得某个路径的父级目录:( 强烈建议使用该方法!可以逐层获取到根目录的地址,例如D:/)

parent_path = os.path.dirname(d) #获得d所在的目录,即d的父级目录
parent_path = os.path.dirname(parent_path) ##获得parent_path所在的目录即parent_path的父级目录

获得规范的绝对路径:

abspath = path.abspath(d) #返回d所在目录规范的绝对路径

二,路径拼接

Python3 os.path.join()用法

功能描述:os.path.join()函数用于路径拼接文件路径。

语法:os.path.join(path1 [,path2 [,...]])

os.path.join()函数中可以传入多个路径:

1.会从第一个以“/”开头的参数开始拼接,之前的参数全部丢弃。

2.优先判定上一种情况。若无,则如果出现“./”开头的参数,会从“./”开头的参数的上一个参数开始拼接。

三,蟒蛇里面的相对路径与绝对路径

如例程所示:

os.path.abspath则则( '')可以获取当前脚本所在的路径,当我们需要在该目录下生成一些文件时,就可以用此命令获取脚本路径。

开放( 'test1.txt的的', 'R')以只读的形式打开该脚本所在路径下的名为test1.txt的的文件文档。

开放('E:/pythonMixture/test2.txt','R')以只读形式打开E:/ pythonMixture路径下的的test2.txt文档

由于字符“\”为蟒蛇中的字符串转义字符,所以:

open('E:/pythonMixture/test2.txt','r')这句等价于open('E:\\ pythonMixture \\ test2.txt','r')
--------- ----

四,实战截图

目的:为了验证E:/ CRMAutoTest001 \ pre_infoChannel.csv E:\ CRMAutoTest001 \ others \上层的测试文档

这两各包含“/”和“\”的地址组合,都是正确的路径。

所以后续遇到这两种写法,都是正确的。

再着重记忆一遍,代码第16行,当文件与脚本不在同一路径,绝对路径的规范写法:E:/pythonMixture/test2.txt

五、小结:

1.  os.path.join()函数用于路径拼接文件路径,这是主流常用的。 方法内部代码封装的完美,只要传入正确的两个路径即可。

2.按照MVC设计结构,相同功能的文件要存放在同个文件夹,当项目大了模块多时就会很好维护。

比如数据源文件,配置文件,公共方法文件,模块控制层文件等。

现在从事的项目,就不进行相对路径和绝对路径的优化,等新项目开始,再重新涉及开发。

3.因为项目的绝对路径都是以E盘根目录开始的,所以测试组小伙伴们从gitlab下载了仓库后,也要把仓库文件复制到E盘根目录,避免报错。

4. 后期要实现的效果,是:全都使用相对路径来配置各类地址。确保所有人从gitlab下载好的仓库文件,安装在哪个盘哪个位置都不会报地址错误(这也是为什么使用相对路径的最根本原因。)

python 相对路径和绝对路径的区别的更多相关文章

  1. python学习:绝对路径和相对路径

    python学习:绝对路径和相对路径 大牛们应该对路径都很了解了,这篇文章主要给像我这样的入门小白普及常识用的,啊哈 下面的路径介绍针对windows,其他平台的暂时不是很了解. 在编写的py文件中打 ...

  2. 显示python已安装模块及路径,添加修改模块搜索路径

    在python交互模式下输入: help('modules') #可以显示出已安装的模块 在python交互模式下输入: import sys sys.path #可以显示出模块搜索路径 增加搜索路径 ...

  3. href 里面 链接前面加/与不加的区别?(绝对路径与相对路径)

    在写href链接时,有绝对路径与相对路径,href 里面 链接前面加/与不加的区别? href="/cp/images/lis.jpg" 相对路径 cp前面/会获取当前路径,组合成 ...

  4. python绝对路径和相对路径

    转自https://blog.csdn.net/databatman/article/details/49453953 下面的路径介绍针对windows,其他平台的暂时不是很了解. 在编写的py文件中 ...

  5. 为Python加入默认模块搜索路径

    为Python加入默认模块搜索路径 方法一:函数加入 1) import sys 2) 查看sys.path 3) 加入sys.path.append("c:\\") 方法二:改动 ...

  6. python中的模块及路径(2)

    如果我们要添加自己的搜索目录,有两种方法: 一是直接修改sys.path,添加要搜索的目录: >>> import sys >>> sys.path.append( ...

  7. 相对路径和绝对路径的区别,java获取项目访问路径的方法

    相对路径和绝对路径的区别 在HTML里只要涉及文件的地方(如超级链接.图片等)就会涉及绝对路径与相对路径的概念. .绝对路径 绝对路径是指文件在硬盘上真正存在的路径.例如“bg.jpg”这个图片是存放 ...

  8. C++中 相对路径与绝对路径 斜杠 '/' 与反斜杠 '\'的区别

    文件路径正斜杠和反斜杠 正斜杠,又称左斜杠,符号是"/":反斜杠,也称右斜杠,符号是"\".文件路径的表示可以分为绝对路径和相对路径: 1.绝对路径表示相对容易 ...

  9. python 在Windows中描述路径时出现的问题

    问题的根本:windows读取文件可以用\,但在字符串里面\被作为转义字符使用,   python在描述路径时有两种方式: 'd:\\a.txt',转义的方式 r'd:\a.txt',声明字符串不需要 ...

随机推荐

  1. Java,Scala:JDBCUtil,MySqlUtil,PhoenixJDBC

    Java,Scala:JDBCUtil,MySqlUtil,PhoenixJDBC pom.xml添加依赖 Java:方式一(亲测实用) 方式二:Scala 方式三:Java PhoenixJDBCU ...

  2. Java 实现Redis客户端,服务端

    Java 实现Redis客户端,服务端 1.Java实现Redis发布订阅 1.1实例 2.[Redis]Java实现redis消息订阅/发布(PubSub) 3.java实现 redis的发布订阅 ...

  3. this.$nextTick( 回调函数 )的作用

    首先要明确几个概念 1.Vue的核心思想 数据驱动 和 组件化系统 2.同步和异步 在没有特殊情下,程序一般先执行同步代码,等待同步执行完之后,执行异步代码 下面进入正题,首先贴出程序片段: 在该段代 ...

  4. var_dump和var_export区别

    1.var_dump() :获取结构化的数据,按照数组的层级输出 2.var_export() :获取结构化的数据,返回有效的php代码,保留结构化形式的存储数据,数据类型为字符串. 例如: < ...

  5. HDU-6881 Tree Cutting (HDU多校D10T5 点分治)

    HDU-6881 Tree Cutting 题意 \(n\) 个点的一棵树,要求删除尽量少的点,使得删点之后还是一棵树,并且直径不超过 \(k\),求删除点的数量 分析 补题之前的一些错误想法: 尝试 ...

  6. Codeforces Round #648 (Div. 2) A. Matrix Game

    题目链接:https://codeforces.com/contest/1365/problem/A 题意 给出一个 $n \times m$ 的网格,两人轮流选择一个所在行列没有 $1$ 的方块置为 ...

  7. MySQL8.0数据库出现的问题——外码创建方式、外键约束两个引用列不兼容问题、check约束问题、用触发器代替check约束、关键字DELIMITER、删除添加索引、删除添加外键约束、和一些数据库方面的操作

    一.首先先说一下我们都需要建立那些表 mysql> CREATE TABLE IF NOT EXISTS `student`( -> `sno` CHAR(8) NOT NULL, -&g ...

  8. hdu 1517 Multiplication Game

    题意: 用整数p乘以2到9中的一个数字.斯坦总是从p = 1开始,做乘法,然后奥利乘以这个数,然后斯坦,以此类推.游戏开始前,他们画一个整数1 < n < 4294967295,谁先到达p ...

  9. 牛客练习赛71 C.数学考试 (DP,容斥原理)

    题意:RT 题解:先对\(p\)排个序,然后设\(dp[i]\)表示前\(i-1\)个\(p[i]\)满足条件但是\(p[i]\)不满足,即在\([1,p[i]]\)中不存在从\(p[1]\)到\(p ...

  10. 洛谷-P1469 找筷子 (位运算)

    题意:给你一组数,求数组中唯一的出现次数为奇数的那个数. 题解:这题其实直接桶排一下就行了,但是最后一个点会TLE. ​ 后来了解到这题可以用位运算来解决: ​ ^(异或)运算符:用于比较两个二进制数 ...