【AI 算法评测】BERT 对 NLP 效果的改善,不负众望!
AI 在各大领域的发展有目共睹,而作为人工智能皇冠上的明珠--自然语言处理却成果了了,大多实现或者以半成品的形式躺在实验室中,或者仅仅作为某个产品的辅助功能。
而这一情况在 BERT 出现后出现了很大的改善。
本文就是通过一款工具的介绍,带大家了解下 BERT 对 NLP 实际效果带来的巨大改变。
(目前工具还在内测中,评测君暗中观察到,每隔段时间都会有非常大的更新)
话不多说,先上截图:
真的是让人惊讶!
在目前的工业 NLP 中,数个类似 词性标注、命名实体识别、实体关系抽取、内容理解、意图识别等任务虽然处于不断进步中,但依然距离实际应用有较大距离,主要是 Bad case 太多、结果太不可预测、人工干预乏力。很难相信,在这样的技术屏障下,通过使用 BERT 算法,这个工具依然实现了巨大的突破。
大家可以自行前往体验:
http://enpuz.com/The-instant-I-did-it-I-knew-I-had-made-a-mistake.=
这里提醒下,目前这个工具限制所输入的英语句子长度,经过评测君体验,不算标点差不多是 12 个单词左右,虽然足够满足学生的需求,但在现实环境中,不得不说是一个较大的限制,比较令人遗憾,希望未来会放开限制!
如下是转自 Standford Parser 的算法截图:
这里可以对应的看下使用 BERT 算法带来的变化:
能力提升:
1. 支持识别句子类型,如陈述句、疑问句、祈使句。
2. 支持分析复杂句的句子结构,如主语从句、宾语从句、定语从句、表语从句、状语从句。
3. 支持分析并列句的句子结构,如并列句、转折句、让步句。
4. 支持分析主句、从句的时态。
5. 支持分析句子中包含的核心语法、固定搭配、动词短语。
6. 支持疑问句、倒装句、省略句等特殊句子的内在结构。
7. 支持识别人名、地名。
8. 能有效处理未登录词。
9. 能给出重点短语、固定搭配的翻译
10. 能给出重点短语、固定搭配的例子、用法、语法扩展
11. 能给出重点短语、固定搭配对应的相似短语
12. 具有较强的命名实体识别能力。
13. 具有较强的关系提取能力。
14. 具有完整的意图识别能力。
15. 具有较强的推理能力。
16. 具有一定的自学习能力。
可能的不足:
1. 长度限制,只支持 12 个单词。
2. 不支持成分缺失较多的口语。
3. 单词、短语翻译覆盖率不足。
4. 缺少反义词、近义词等常见词典工具具备的数据。
5. 内容表现单一。
当然3、4、5跟算法本身关系不是特别大。
总结
作为少有的以 nlp 能力为主打的产品,尽管有诸如长度、不支持口语等限制,评测君还是比较期待这款工具未来的变化。
大家也可以去体验:http://enpuz.com/
如果评测内容不实不准,欢迎私信。
码字不易,求赞求推荐!
【AI 算法评测】BERT 对 NLP 效果的改善,不负众望!的更多相关文章
- 阿里开源新一代 AI 算法模型,由达摩院90后科学家研发
最炫的技术新知.最热门的大咖公开课.最有趣的开发者活动.最实用的工具干货,就在<开发者必读>! 每日集成开发者社区精品内容,你身边的技术资讯管家. 每日头条 阿里开源新一代 AI 算法模型 ...
- AI算法测评事项
前言 注:大概2017年-2018年国内人工智能热度达到顶峰,随后热度开始逐渐减少.2018年前人工智能被投资界.学术界.工业界和媒体炒的特别热,各大企业都想尝试一下深度学习技术在业务场景的应用.试水 ...
- H5版俄罗斯方块(3)---游戏的AI算法
前言: 算是"long long ago"的事了, 某著名互联网公司在我校举行了一次"lengend code"的比赛, 其中有一题就是"智能俄罗斯方 ...
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 聊聊找AI算法岗工作
https://blog.csdn.net/weixin_42137700/article/details/81628028 首先,本文不是为了增加大家的焦虑感,而是站在一名学生的角度聊聊找AI算法岗 ...
- AI算法测评(二)--算法测试流程
根据算法测试过程中遇到的一些问题和管理规范, 梳理出算法测试工作需要关注的一些点: 编号 名称 描述信息 备注 1 明确算法测试需求 明确测试目的 明确测试需求, 确认测试需要的数据及场景 明确算法服 ...
- 浅析初等贪吃蛇AI算法
作为小学期程序设计训练大作业的一部分,也是自己之前思考过的一个问题,终于利用小学期完成了贪吃蛇AI的一次尝试,下作一总结. 背景介绍: 首先,我针对贪吃蛇AI这一关键词在百度和google上尽心了检索 ...
- 游戏人工智能 读书笔记 (四) AI算法简介——Ad-Hoc 行为编程
本文内容包含以下章节: Chapter 2 AI Methods Chapter 2.1 General Notes 本书英文版: Artificial Intelligence and Games ...
- Bert 时代的创新(应用篇):Bert 在 NLP 各领域的
Bert 时代的创新(应用篇):Bert 在 NLP 各领域的
随机推荐
- 关于maven的一份小笔记
简介 项目里一直用的 maven,几乎天天和这个"熟知"的工具打交道,但是,最近我发觉自己对 maven 了解的还不够,例如,什么是 goal?什么是 phase?等等.趁着最近有 ...
- DJANGO-天天生鲜项目从0到1-004-用户模块-个人中心页
本项目基于B站UP主‘神奇的老黄’的教学视频‘天天生鲜Django项目’,视频讲的非常好,推荐新手观看学习 https://www.bilibili.com/video/BV1vt41147K8?p= ...
- 使用jwt进行token认证
简单说明:最近在搞权限这一块的东西,需要用到jwt进行token认证,才有了如下的demo演示 具体细节可以看gitbug,噗,不是bug是hub github地址:https://github ...
- Python编程入门(第3版)|百度网盘免费下载|零基础入门学习资料
百度网盘免费下载:Python编程入门(第3版) 提取码:rsd7 目录 · · · · · · 第1章 编程简介 11.1 Python语言 21.2 Python适合用于做什么 31.3 程序员 ...
- 中科大数分教材:用阶乘倒数和计算e值的误差和e是无理数的证明,用到误差计算
\(e=lim_{n \to \infty}e_{n}(1+\frac{1}{n})^n\\\) \(=\lim_{n \to \infty}(\frac{1}{0!}+\frac{1}{1!}+\f ...
- centos7 离线安装paramiko
离线安装paramiko 1. 利用yum下载paramiko依赖的rpm软件包 安装yum-utils yum -y install yum-utils yumdownloader python ...
- Dom运用2
1.登录系统 <!--输入框创建--> 账号:<input class="ipt" type="text"><br> 密码: ...
- Fortify Audit Workbench 笔记 Privacy Violation: Heap Inspection 隐私泄露(堆检查)
Privacy Violation: Heap Inspection 隐私泄露(堆检查) Abstract 将敏感数据存储在 String 对象中使系统无法从内存中可靠地清除数据. Explanati ...
- Day10_ElasticSearch
学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"乐优商城"获取视频和教程资料! b站在线视频 老师的码 ...
- activiti7 获取流程定义的xml
RepositoryService repositoryService = ProcessEngines.getDefaultProcessEngine().getRepositoryService( ...