Buses
                                                                                                                                                                                     time limit per test

2 seconds

                                                                                                                                                                                   memory limit per test

265 megabytes

                                                                                                                                                                                             input

standard input

                                                                                                                                                                                              output

standard output

Little boy Gerald studies at school which is quite far from his house. That's why he has to go there by bus every day. The way from home to school is represented by a segment of a straight line; the segment contains exactly n + 1 bus stops. All of them are numbered with integers from 0 to n in the order in which they follow from Gerald's home. The bus stop by Gerald's home has number 0 and the bus stop by the school has number n.

There are m buses running between the house and the school: the i-th bus goes from stop si to ti (si < ti), visiting all the intermediate stops in the order in which they follow on the segment. Besides, Gerald's no idiot and he wouldn't get off the bus until it is still possible to ride on it closer to the school (obviously, getting off would be completely pointless). In other words, Gerald can get on the i-th bus on any stop numbered from si to ti - 1 inclusive, but he can get off the i-th bus only on the bus stop ti.

Gerald can't walk between the bus stops and he also can't move in the direction from the school to the house.

Gerald wants to know how many ways he has to get from home to school. Tell him this number. Two ways are considered different if Gerald crosses some segment between the stops on different buses. As the number of ways can be too much, find the remainder of a division of this number by 1000000007 (109 + 7).

Input

The first line contains two space-separated integers: n and m (1 ≤ n ≤ 109, 0 ≤ m ≤ 105). Then follow m lines each containing two integers si, ti. They are the numbers of starting stops and end stops of the buses (0 ≤ si < ti ≤ n).

Output

Print the only number — the number of ways to get to the school modulo 1000000007 (109 + 7).

Sample test(s)
Input
2 2
0 1
1 2
Output
1
Input
3 2
0 1
1 2
Output
0
Input
5 5
0 1
0 2
0 3
0 4
0 5
Output
16
Note

The first test has the only variant to get to school: first on bus number one to the bus stop number one; then on bus number two to the bus stop number two.

In the second test no bus goes to the third bus stop, where the school is positioned. Thus, the correct answer is 0.

In the third test Gerald can either get or not on any of the first four buses to get closer to the school. Thus, the correct answer is 24 = 16.

题意:有m条公交路线,问你有多少中方案从0到n,每条公交路线的描述为s,t:s为起点,t为终点,可以在除终点外的任意站上车即[s,t-1]间的站,但只能在终点下车。

分析:树状数组+DP,f[t]表示到达t站的方案数,按t对公交路线排序,对于当前的公交车,假设起点站和终点站分别为s,t,那么对于区间[s,t-1]站内上车的都可以到达t,那么查询[s,t-1]之间有的所有方案数的和可以用树状数组求得并维护。由于n>>m所以离散化。

树状数组:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll p[maxn],bit[maxn],tol;
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
ll sum(ll i)
{
ll s=;
while(i>)
{
s=(s+bit[i])%mod;
i-=i&-i;
}
return s%mod;
}
void add(ll i,ll x)
{
while(i<=tol)
{
bit[i]=(bit[i]+x)%mod;
i+=i&-i;
}
}
int main()
{
ll n,m;scanf("%lld%lld",&n,&m);
tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
ll s=;
for(int i=;i<m;i++)
{
int l=lower_bound(p+,p+tol+,c[i].l)-p;
int r=lower_bound(p+,p+tol+,c[i].r)-p;
ll ans=;
if(c[i].l==)ans++;
ans+=sum(r-)-sum(l-);
ans=(ans+mod)%mod;
add(r,ans);
if(c[i].r==n)s=sum(r)-sum(r-);
}
printf("%lld\n",(s+mod)%mod);
return ;
}

线段树:

#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll n,m,p[maxn*];
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
struct node
{
ll left,right,mid;
ll x;
}tree[maxn*];
void build(ll l,ll r,int rt)
{
tree[rt].left=l;
tree[rt].right=r;
tree[rt].mid=(l+r)>>;
if(l==r)return;
build(l,tree[rt].mid,rt<<);
build(tree[rt].mid+,r,rt<<|);
}
ll query(ll l,ll r,int rt)
{
if(l<=tree[rt].left&&r>=tree[rt].right)
return tree[rt].x%mod;
ll ans=;
if(l<=tree[rt].mid)
ans+=query(l,r,rt<<);
ans%=mod;
if(r>tree[rt].mid)
ans+=query(l,r,rt<<|);
return ans%mod;
}
void add(ll L,ll C,int rt)
{
if(tree[rt].left==tree[rt].right)
{
tree[rt].x=(tree[rt].x+C)%mod;
return;
}
if(L<=tree[rt].mid)
add(L,C,rt<<);
else
add(L,C,rt<<|);
tree[rt].x=(tree[rt<<].x+tree[rt<<|].x)%mod;
}
int main()
{
scanf("%lld%lld",&n,&m);
int tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
build(,tol,);
ll sum=;
for(int i=;i<m;i++)
{
ll ans=;
ll l=lower_bound(p+,p+tol+,c[i].l)-p;
ll r=lower_bound(p+,p+tol+,c[i].r)-p;
if(c[i].l==)ans++;
if(r>=l)ans+=query(l,r-,);
add(r,ans,);
if(c[i].r==n)sum=query(r,r,);
}
printf("%lld\n",sum);
return ;
}

Codeforce 101B. Buses(线段树or树状数组+离散化)的更多相关文章

  1. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

  2. hdu4605 树状数组+离散化+dfs

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  4. LightOJ 1085(树状数组+离散化+DP,线段树)

    All Possible Increasing Subsequences Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format: ...

  5. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  6. HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...

  7. [HDOJ4325]Flowers(树状数组 离散化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4325 关于离散化的简介:http://blog.csdn.net/gokou_ruri/article ...

  8. hdu5124(树状数组+离散化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124 题意:有n条线段,求被覆盖到次数最多的点的次数 分析: 1.可以转化成求前缀和最大的问题:将区间 ...

  9. Ultra-QuickSort---poj2299 (归并排序.逆序数.树状数组.离散化)

    题目链接:http://poj.org/problem?id=2299 题意就是求把数组按从小到大的顺序排列,每次只能交换相邻的两个数, 求至少交换了几次 就是求逆序数 #include<std ...

随机推荐

  1. POJ 3253 Fence Repair 贪心+优先队列

    题意:农夫要将板割成n块,长度分别为L1,L2,...Ln.每次切断木板的花费为这块板的长度,问最小花费.21 分为 5 8 8三部分.   思路:思考将n部分进行n-1次两两合成最终合成L长度和题目 ...

  2. 多版本python的使用

    装任一版本的virtualenv都可以 在创建virtualenv时只需指定python的安装位置就可使用该版本的python virtualenv --python=D:\install\pytho ...

  3. wareshark网络协议分析之DHCP

    声明:本文关于DHCP协议介绍部分摘自百度百科 一.DHCP协议介绍: DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)是一个局域网的网络协议,使用 ...

  4. 泛型学习第四天——List泛型终结:什么是List泛型,泛型筛选,泛型排序

    为什么要用泛型集合? 在C# 2.0之前,主要可以通过两种方式实现集合: a.使用ArrayList 直接将对象放入ArrayList,操作直观,但由于集合中的项是Object类型,因此每次使用都必须 ...

  5. Spring初学之bean的生命周期

    实体Bean: Car.java: package spring.beans.cycle; public class Car { private String name; private int pr ...

  6. 在Windows下使用adb logcat grep

    在Windows下使用adb logcat  grep 会提示 因为grep 为Linux命令,所以不能使用.怎么办呢? 这时候可以用到babun 下载地址:http://babun.github.i ...

  7. Ubuntu linux背景指南:在开始之前需要知道哪些东西

    1.摘要 Ubuntu是一个新的GNU/Linux衍生操作系统,其目标是更多地以用户为本以及桌面应用. 因此,Ubuntu的目的是消除安装的困难,在很大程度上靠自动配置和自动探测硬件解决 问题,无须用 ...

  8. intellij idea build时出现Artifact contains illegal characters的解决

    此处无法创建是因为Artifact的命名为大小写混合,将大写改为小写即可正常创建

  9. Delphi_检查exe文件是否是"随机基址"

    ZC: cnpack 还是蛮好用的 1.代码: procedure TForm1.btnRandomizedBaseAddressClick(Sender: TObject); var pDosHdr ...

  10. ActiveMQ 消息存储

    本章重点 ActiveMQ 中,队列和主题里的消息是怎么存储的 ActiveMQ 提供的四种消息存储形式 ActiveMQ 是怎么为消费者缓存消息的 使用订阅恢复模式,怎么控制消息缓存 简介 JMS ...