Buses
                                                                                                                                                                                     time limit per test

2 seconds

                                                                                                                                                                                   memory limit per test

265 megabytes

                                                                                                                                                                                             input

standard input

                                                                                                                                                                                              output

standard output

Little boy Gerald studies at school which is quite far from his house. That's why he has to go there by bus every day. The way from home to school is represented by a segment of a straight line; the segment contains exactly n + 1 bus stops. All of them are numbered with integers from 0 to n in the order in which they follow from Gerald's home. The bus stop by Gerald's home has number 0 and the bus stop by the school has number n.

There are m buses running between the house and the school: the i-th bus goes from stop si to ti (si < ti), visiting all the intermediate stops in the order in which they follow on the segment. Besides, Gerald's no idiot and he wouldn't get off the bus until it is still possible to ride on it closer to the school (obviously, getting off would be completely pointless). In other words, Gerald can get on the i-th bus on any stop numbered from si to ti - 1 inclusive, but he can get off the i-th bus only on the bus stop ti.

Gerald can't walk between the bus stops and he also can't move in the direction from the school to the house.

Gerald wants to know how many ways he has to get from home to school. Tell him this number. Two ways are considered different if Gerald crosses some segment between the stops on different buses. As the number of ways can be too much, find the remainder of a division of this number by 1000000007 (109 + 7).

Input

The first line contains two space-separated integers: n and m (1 ≤ n ≤ 109, 0 ≤ m ≤ 105). Then follow m lines each containing two integers si, ti. They are the numbers of starting stops and end stops of the buses (0 ≤ si < ti ≤ n).

Output

Print the only number — the number of ways to get to the school modulo 1000000007 (109 + 7).

Sample test(s)
Input
2 2
0 1
1 2
Output
1
Input
3 2
0 1
1 2
Output
0
Input
5 5
0 1
0 2
0 3
0 4
0 5
Output
16
Note

The first test has the only variant to get to school: first on bus number one to the bus stop number one; then on bus number two to the bus stop number two.

In the second test no bus goes to the third bus stop, where the school is positioned. Thus, the correct answer is 0.

In the third test Gerald can either get or not on any of the first four buses to get closer to the school. Thus, the correct answer is 24 = 16.

题意:有m条公交路线,问你有多少中方案从0到n,每条公交路线的描述为s,t:s为起点,t为终点,可以在除终点外的任意站上车即[s,t-1]间的站,但只能在终点下车。

分析:树状数组+DP,f[t]表示到达t站的方案数,按t对公交路线排序,对于当前的公交车,假设起点站和终点站分别为s,t,那么对于区间[s,t-1]站内上车的都可以到达t,那么查询[s,t-1]之间有的所有方案数的和可以用树状数组求得并维护。由于n>>m所以离散化。

树状数组:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll p[maxn],bit[maxn],tol;
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
ll sum(ll i)
{
ll s=;
while(i>)
{
s=(s+bit[i])%mod;
i-=i&-i;
}
return s%mod;
}
void add(ll i,ll x)
{
while(i<=tol)
{
bit[i]=(bit[i]+x)%mod;
i+=i&-i;
}
}
int main()
{
ll n,m;scanf("%lld%lld",&n,&m);
tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
ll s=;
for(int i=;i<m;i++)
{
int l=lower_bound(p+,p+tol+,c[i].l)-p;
int r=lower_bound(p+,p+tol+,c[i].r)-p;
ll ans=;
if(c[i].l==)ans++;
ans+=sum(r-)-sum(l-);
ans=(ans+mod)%mod;
add(r,ans);
if(c[i].r==n)s=sum(r)-sum(r-);
}
printf("%lld\n",(s+mod)%mod);
return ;
}

线段树:

#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll n,m,p[maxn*];
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
struct node
{
ll left,right,mid;
ll x;
}tree[maxn*];
void build(ll l,ll r,int rt)
{
tree[rt].left=l;
tree[rt].right=r;
tree[rt].mid=(l+r)>>;
if(l==r)return;
build(l,tree[rt].mid,rt<<);
build(tree[rt].mid+,r,rt<<|);
}
ll query(ll l,ll r,int rt)
{
if(l<=tree[rt].left&&r>=tree[rt].right)
return tree[rt].x%mod;
ll ans=;
if(l<=tree[rt].mid)
ans+=query(l,r,rt<<);
ans%=mod;
if(r>tree[rt].mid)
ans+=query(l,r,rt<<|);
return ans%mod;
}
void add(ll L,ll C,int rt)
{
if(tree[rt].left==tree[rt].right)
{
tree[rt].x=(tree[rt].x+C)%mod;
return;
}
if(L<=tree[rt].mid)
add(L,C,rt<<);
else
add(L,C,rt<<|);
tree[rt].x=(tree[rt<<].x+tree[rt<<|].x)%mod;
}
int main()
{
scanf("%lld%lld",&n,&m);
int tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
build(,tol,);
ll sum=;
for(int i=;i<m;i++)
{
ll ans=;
ll l=lower_bound(p+,p+tol+,c[i].l)-p;
ll r=lower_bound(p+,p+tol+,c[i].r)-p;
if(c[i].l==)ans++;
if(r>=l)ans+=query(l,r-,);
add(r,ans,);
if(c[i].r==n)sum=query(r,r,);
}
printf("%lld\n",sum);
return ;
}

Codeforce 101B. Buses(线段树or树状数组+离散化)的更多相关文章

  1. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

  2. hdu4605 树状数组+离散化+dfs

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  4. LightOJ 1085(树状数组+离散化+DP,线段树)

    All Possible Increasing Subsequences Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format: ...

  5. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  6. HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...

  7. [HDOJ4325]Flowers(树状数组 离散化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4325 关于离散化的简介:http://blog.csdn.net/gokou_ruri/article ...

  8. hdu5124(树状数组+离散化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124 题意:有n条线段,求被覆盖到次数最多的点的次数 分析: 1.可以转化成求前缀和最大的问题:将区间 ...

  9. Ultra-QuickSort---poj2299 (归并排序.逆序数.树状数组.离散化)

    题目链接:http://poj.org/problem?id=2299 题意就是求把数组按从小到大的顺序排列,每次只能交换相邻的两个数, 求至少交换了几次 就是求逆序数 #include<std ...

随机推荐

  1. Luogu-3878 [TJOI2010]分金币

    这题和在我长郡考试时的一道题思路差不多...考虑折半搜索,预处理左半边选的方案所产生的数量差值\(x\)以及价值差值\(y\),把\(y\)扔到下标为\(x\)的set里面,然后在搜索右半边,每搜出一 ...

  2. Datax官方笔记总结

    # DataX DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL.SQL Server.Oracle.PostgreSQL.HDFS.Hive.HBase.OTS. ...

  3. Mybatis单个参数的if判断(针对异常:There is no getter for property..)------mybatis的内置对象

    这里有一个删除方法: int deleteByPrimaryKey(Integer id); 然后对应的sql的xml如下: <delete id="deleteByPrimaryKe ...

  4. jqgrid的scroll参数的使用

    scroll参数会影响addJSONData(data)方法的使用 存在scroll参数,addJSONData方法会往表格中追加数据: 不存在scroll参数时,addJSONData方法会覆盖表格 ...

  5. linux基础(9)-获取时间

    获取今天日期 date +%Y-%m-%d date +%y-%m-%d date  +%F   获取昨天日期 date -d yesterday +%F date -d -1day +%F     ...

  6. spring的事物回滚

    //默认spring只能在捕获到runtimeException时才会回滚, throw new RuntimeException("出现runtime异常"); } catch ...

  7. 【Prism】MEF版Commanding

    引言 接下来的是Commanding Demo的改造. DelegateCommand    WPF本身提供了一个RoutedCommand,然而没什么卵用.在Prism框架中提供了个更人性化的ICo ...

  8. js修改隔行tr的颜色。

    <!DOCTYPE html><html lang="zh-Hans"><head> <meta charset="UTF-8& ...

  9. hbase_异常_03_java.io.EOFException: Premature EOF: no length prefix available

    一.异常现象 更改了hadoop的配置文件:core-site.xml  和   mapred-site.xml  之后,重启hadoop 和 hbase 之后,发现hbase日志中抛出了如下异常: ...

  10. linux install JDK

    安装JDK 下载jdk-6u23-linux-i586.bin,samba,FTP cd /usr/local/src/ wget http://www.aminglinux.com/bbs/data ...