题目链接  Goodbye 2017 Problem D

题意  一个字符串开始,每次有$\frac{pa}{pa+pb}$的概率在后面加一个a,$\frac{pb}{pa+pb}$的概率在后面加一个$b$。

   求当整个串中有至少$k$个$ab$的时候(不需要连续,下同),字符串中$ab$个数的期望。

设$f[i][j]$为字符串有$i$个$a$,$j$个$ab$的时候字符串中$ab$个数的期望

设$p = \frac{pa}{pa+pb}$, $q = \frac{pb}{pa+pb}$

那么对于正常的情况(非边界情况),

$f[i][j] = f[i+1][j] * p + f[i + 1][i + j] * q$

对于边界情况,即当$i + j >= k$且$j < k$的时候,这个时候再加一个$a$就满足了题意的条件。

这个情况下$f[i][j] - i - j$应该都是一样的。令$f[i][j] - i - j = c$。

$c = pq + 2p^{2}q + 3p^{3}q + ... + ...$

时间复杂度$O(n^{2})$

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 1e3 + 10;
const int mod = 1e9 + 7; int f[N][N];
int k, pa, pb, A, B, C; void gcd(int a, int b, int &x, int &y){
if (!b) {x = 1; y = 0;}
else { gcd(b, a % b, y, x); y -= x * (a / b);}
} int inv(int a){
int x, y;
gcd(a, mod, x, y);
return (x % mod + mod) % mod;
} int main(){ scanf("%d%d%d", &k, &pa, &pb);
A = 1ll * pa * inv(pa + pb) % mod;
B = (1 - A + mod) % mod;
C = 1ll * pa * inv(pb) % mod;
dec(i, k, 1){
dec(j, k, 0){
f[i][j] = i + j >= k ? (i + j + C) % mod: (1ll * A * f[i + 1][j] + 1ll * B * f[i][i + j]) % mod;
}
} printf("%d\n", f[1][0]);
return 0;
}

  

Codeforces 908D New Year and Arbitrary Arrangement(概率DP,边界条件处理)的更多相关文章

  1. [CodeForces]908D New Year and Arbitrary Arrangement

    设状态f[i][j]表示有i个a,j个ab的期望 发现如果i+j>=k的话就再来一个b就行了. #include <iostream> #include <cstdio> ...

  2. CF 908D New Year and Arbitrary Arrangement——期望dp

    题目:http://codeforces.com/contest/908/problem/D 注意是子序列.加一个a对ab个数无影响:加一个b使ab个数多出它前面的a那么多个.所以状态里记录有多少个a ...

  3. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  4. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  5. codeforces 768 D. Jon and Orbs(概率dp)

    题目链接:http://codeforces.com/contest/768/problem/D 题意:一共有k种球,要得到k种不同的球至少一个,q个提问每次提问给出一个数pi,问概率大小大于等于pi ...

  6. 2018.12.12 codeforces 935D. Fafa and Ancient Alphabet(概率dp)

    传送门 概率dp水题. 题意简述:给你数字表的大小和两个数列,数列中为0的数表示不确定,不为0的表示确定的,求第一个数列字典序比第二个数列大的概率. fif_ifi​表示第i ni~ ni n位第一个 ...

  7. Solution -「CF 908D」New Year&Arbitrary Arrangement

    \(\mathcal{Description}\)   Link.   给定 \(n,p_a,p_b\),初始有一个空串,每次操作有 \(\frac{p_a}{p_a+p_b}\) 的概率在其后添加字 ...

  8. 908D New Year and Arbitrary Arrangement

    传送门 分析 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string ...

  9. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

随机推荐

  1. viewDidLoad dispatch_sync

    - (void)viewDidLoad { [super viewDidLoad]; NSLog(@"1"); dispatch_sync(dispatch_get_main_qu ...

  2. Windows7中如何让python2和python3共存并使用pip

    1.下载安装python2和python3 分别下载python2.7.exe.python3.6.exe并安装到C盘.E盘(如图)     2.配置环境变量 打开“系统变量”中的path文本框(如图 ...

  3. (转) Unreal的HLSL交叉编译-UEAPI

    HLSL Cross Compiler This library compiles High Level Shading Language (HLSL) shader source code into ...

  4. 【LeetCode】Swap Nodes in Pairs(两两交换链表中的节点)

    这是LeetCode里的第24题. 题目要求: 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 示例: 给定1->2->3->4, 你应该返回2->1->4- ...

  5. Opencv3.3.1安装包

    这个资源是Opencv3.3.1安装包,包括Windows软件包,Android软件包,IOS软件包,还有opencv的源代码:需要的下载吧. 点击下载

  6. PHP如何实现第三方分享

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. Python 的音乐库

    前言 其实处理这个用 Matlab 最方便,之前把 guitar-synthesizer 从 Matlab 移植到 Python,过程中更是体会到了这一点. 不过 Matlab 安装包又大,启动又慢, ...

  8. HDU 3577 Fast Arrangement ( 线段树 成段更新 区间最值 区间最大覆盖次数 )

    线段树成段更新+区间最值. 注意某人的乘车区间是[a, b-1],因为他在b站就下车了. #include <cstdio> #include <cstring> #inclu ...

  9. ls目录结构

    命令ls ls -l = ll -l 详细信息-a 查看隐藏的文件或目录-d 只看目录本身,不列出目录下面的文件和目录 一起使用一般 ls -ld-t 以时间先后排序-i 显示文件节点-h 显示字节大 ...

  10. 个人收藏的移动端网页布局rem解决方案

    写移动端项目时,总是会纠结是用css3 media query 还是用rem.移动端框架挺多,但是因为项目都比较小,不考虑使用. 无意在网上找到一个移动端rem布局的解决方案,经个人实践,目前未出现什 ...